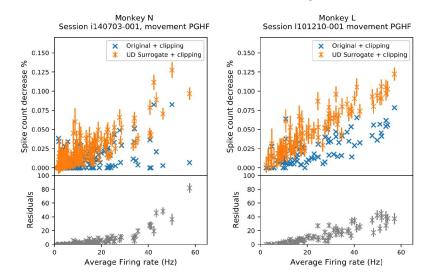

Reoccurring spatio-temporal spike patterns in parallel spike trains

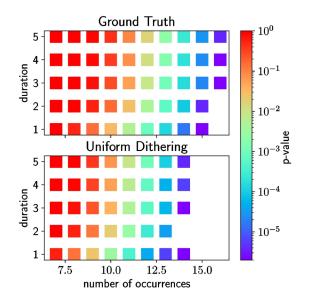
Alessandra Stella^{1,2}, Peter Bouss^{1,2}, Günther Palm^{1,3}, Sonja Grün^{1,2}

- 1. Institute of Neuroscience and Medicine (INM-6, INM-10), Institute for Advanced Simulation (IAS-6) and Jara Brain Institute I (INM-10), Jülich Research Centre
- 2. Institute of Neural Information Processing, University of Ulm, Ulm, Germany
- 3. Theoretical Systems Neurobiology, RWTH Aachen University, Germany



STP detection on parallel spike trains with SPADE. Adapted from Stella et al. 2019

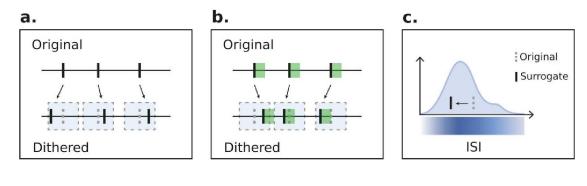
Spike count decrease due to Uniform Dithering

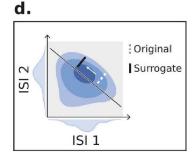


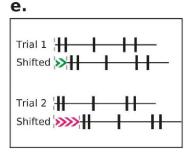
Spike count decrease resulting from UD surrogate generation and clipping. Stella et al. 2020 (in preparation)

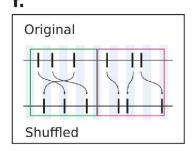
Issues of UD:

- · does not maintain the dead time of the neuron
- · destroys potentially existing ISI regularity
- leads to **spike count decrease after discretization** (clipping) of the spike train, especially for high firing rates.

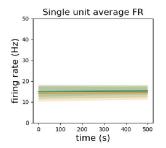

Problem: overestimation of significance

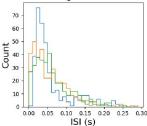



Shift in the p-value distribution between the original data set and the UD surrogates. The null hypothesis overestimates the significance of the patterns detected in the original data, leading to false positives detection.

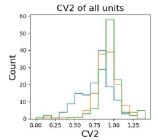


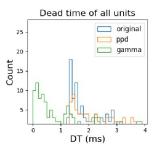
Alternative surrogate techniques

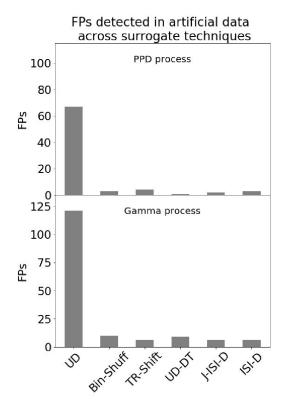

a) Uniform Dithering (UD) (Date et al. 1998; Grün, Rotter (2010)); b) Uniform dithering with Dead Time (UD-DT); c) ISI-Dithering (ISI-D); d) Joint ISI-Dithering (JISI-D) (Gerstein 2004); e) Trial Shifting (TR-Shift) (Pipa et al. 2008; Louis et al. 2010a Grün, Rotter (2010)); f) Bin Shuffling (Bin-Shuff);



Application of surrogate techniques on artificial data

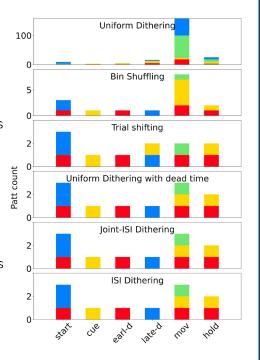

Artificial data modeled on two sessions of experimental data (Brochier et al. 2018) by Poisson process with dead time (PPD; Deger et al. 2012) and Gamma process.


Statistics of experimental and artificial data


Single unit ISI

In artificial data:

- In case of non-Poisson data, UD leads to a strong reduction in spike count after clipping, causing a large number of false positives (FPs)
- The other methods show a small number of FPs
- More patterns are detected when their intrinsic regularity is included in the artificial data (Gamma process). Fewer FPs for PPD process
- UD-DT shows a higher number of FPs in the case of Gamma process (for neurons with high firing rate).



Email: a.stella@fz-juelich.de Twitter: @alletsandra

Application of surrogate techniques on experimental data

In experimental data:

- We detect most patterns by using UD (likely to be FPs)
- Higher amount of patterns in start and movement period of the trials for all surrogate techniques (besides UD)
- Same patterns detected across TR-Shift, UD-DT, J-ISI-D, ISI-D. Pattern sizes (number of spikes) ranging from 2 to 5.
 Pattern occurrences ranging from 11 to 386 (depending on size).

Conclusions

We analyze experimental data and ad-hoc artificially generated independent data with six different surrogate techniques, in order to evaluate their statistical performances when looking for spatio-temporal spike patterns. We find:

- all surrogate techniques despite UD keep the spike counts at least approximately identical to the original data after clipping
- firing rate reduction after clipping of the surrogate spike train is the primary reason for FPs
- weakening the ISI/J-ISI property of the original spike train is of lower impact on FPs
- low number of FPs across surrogate techniques besides
 UD
- we detect the same patterns in experimental data across different surrogate techniques, evidencing the robustness of our findings.

Acknowledgments: The project is funded by the Helmholtz Association Initiative and Networking Fund (ZT-I-0003), by Human Brain Project HBP Grant No. 785907 (SGA2 and SGA3), and by RTG2416 MultiSenses-MultiScales (DFG). We thank Sebastian Lehmann for the help in the design and development of the graphics.

