000885612 001__ 885612
000885612 005__ 20240313094845.0
000885612 0247_ $$2doi$$a10.12751/NNCN.BC2020.0098
000885612 037__ $$aFZJ-2020-03964
000885612 041__ $$aeng
000885612 1001_ $$0P:(DE-Juel1)180365$$aKöhler, Cristiano$$b0$$eCorresponding author$$ufzj
000885612 1112_ $$aOnline Bernstein Conference 2020$$conline$$d2020-09-29 - 2020-10-01$$wGermany
000885612 245__ $$aProvenance capture in the analysis of electrophysiology data: an example based on the Elephant package
000885612 260__ $$c2020
000885612 3367_ $$033$$2EndNote$$aConference Paper
000885612 3367_ $$2BibTeX$$aINPROCEEDINGS
000885612 3367_ $$2DRIVER$$aconferenceObject
000885612 3367_ $$2ORCID$$aCONFERENCE_POSTER
000885612 3367_ $$2DataCite$$aOutput Types/Conference Poster
000885612 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1603108724_22012$$xOther
000885612 520__ $$aWorkflows for the analysis of electrophysiology data typically comprise multiple steps, which should be fully documented when aiming at the reproducibility of the results. Considering the complexity, modularity and often iterative nature of such workflows, robust tools forming the basis of the workflow are necessary [1]. We focus here on two open-source tools used for the analysis of electrophysiology data. The Neo (RRID:SCR_000634) framework provides a data object model to standardize data of different origins [2]. Elephant (RRID:SCR_003833) is a toolbox for both standard and highly sophisticated analyses of simulated and experimental data [3]. The characterization of all data manipulations and the parameters throughout the workflow provides provenance information [4] that improves reproducibility of the results. This requires complete and self-explanatory descriptions of the data objects in the workflow and a method to minimize the need for manually tracking its execution. While the Neo framework provides a model to structure the neuronal data and associated metadata, a similar representation for the outputs of the analysis part of the workflow is still missing. Moreover, automated provenance capture is not available at the function level for a single Python script. Thus, existing tools must be improved to implement a data model that captures analysis outputs and workflow provenance and, ultimately, represents the analysis and its results in accordance with the FAIR principles [5].Here we present a conceptual solution to capture provenance during the analysis of electrophysiology data. First, we introduce a standardization of the outputs of the Elephant functions, which is inspired by the Neo model. Thus, the information about the generation of an analysis output will be encapsulated in a new set of Python objects that can be easily re-used or shared. These objects will be integrated into the existing code bases with minimal disruption. This will free the scientist from the need to manually annotate the output of the analysis. Second, we will show how to capture provenance information throughout the Python analysis script by using function decorators. These track the Elephant and user-defined functions in the script while mapping the inputs to the outputs, thereby also yielding a provenance trace in the form of a graph. We present a prototype implementation and demonstrate its use in a scenario where spike and LFP data are analyzed by standard methods. References: [1] Denker, M. and Grün, S. (2016). Designing Workflows for the Reproducible Analysis of Electrophysiological Data. In Brain-Inspired Computing, Amunts, K. et al., eds. (Cham: Springer International Publishing), pp. 58-72. [2] Garcia, S. et al. (2014) Neo: an object model for handling electrophysiology data in multiple formats. Frontiers in Neuroinformatics 8:10. [3] http://python-elephant.org [4] Ragan, E.D. et al. (2016). Characterizing Provenance in Visualization and Data Analysis: An Organizational Framework of Provenance Types and Purposes. IEEE Transactions on Visualization and Computer Graphics. 22(1):31–40. [5] Wilkinson, M.D. et al. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 3, 160018.
000885612 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000885612 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x1
000885612 536__ $$0G:(DE-Juel1)HDS-LEE-20190612$$aHDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)$$cHDS-LEE-20190612$$x2
000885612 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x3
000885612 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$x4
000885612 536__ $$0G:(DE-HGF)ZT-I-0003$$aHAF - Helmholtz Analytics Framework (ZT-I-0003)$$cZT-I-0003$$x5
000885612 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x6
000885612 588__ $$aDataset connected to DataCite
000885612 7001_ $$0P:(DE-Juel1)178793$$aUlianych, Danylo$$b1
000885612 7001_ $$0P:(DE-HGF)0$$aGerkin, Richard C.$$b2
000885612 7001_ $$0P:(DE-HGF)0$$aDavison, Andrew P.$$b3
000885612 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b4
000885612 7001_ $$0P:(DE-Juel1)144807$$aDenker, Michael$$b5
000885612 773__ $$a10.12751/NNCN.BC2020.0098
000885612 909CO $$ooai:juser.fz-juelich.de:885612$$pec_fundedresources$$pVDB$$popenaire
000885612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180365$$aForschungszentrum Jülich$$b0$$kFZJ
000885612 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180365$$aRWTH Aachen$$b0$$kRWTH
000885612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178793$$aForschungszentrum Jülich$$b1$$kFZJ
000885612 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a School of Life Sciences, Arizona State University, Tempe, AZ, USA$$b2
000885612 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Université Paris-Saclay, CNRS, Institut des neurosciences Paris-Saclay, Gif-sur-Yvette, France$$b3
000885612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b4$$kFZJ
000885612 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)144168$$aRWTH Aachen$$b4$$kRWTH
000885612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144807$$aForschungszentrum Jülich$$b5$$kFZJ
000885612 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000885612 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1
000885612 9141_ $$y2020
000885612 920__ $$lno
000885612 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000885612 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x1
000885612 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x2
000885612 980__ $$aposter
000885612 980__ $$aVDB
000885612 980__ $$aI:(DE-Juel1)INM-6-20090406
000885612 980__ $$aI:(DE-Juel1)INM-10-20170113
000885612 980__ $$aI:(DE-Juel1)IAS-6-20130828
000885612 980__ $$aUNRESTRICTED
000885612 981__ $$aI:(DE-Juel1)IAS-6-20130828