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Abstract 

 

Since A. Yu. Kitaev predicted in 2001 that quasi-one-dimensional p-wave 

superconductors are a possible platform for Majorana bound states (MBSs), numerous 

experiments have been conducted to find signatures and prove the existence of these 

MBSs. The majority of these experiments focused on tunnel spectroscopy on 

proximitized III-V semiconductor nanowires. Another possible platform to realize this 

exotic superconductivity are 3D topological insulators (3D-TIs) proximitized by s-wave 

superconductors. A major challenge to perform such tunnel spectroscopy experiments on 

3D-TIs is the prevention of deterioration of the sensitive 3D-TI surface and the additional 

need to fabricate a suitable tunnel barrier. In this thesis selective area epitaxy of BiSbTe is 

conducted to obtain nanoribbons of this 3D-TI. Moreover, a multi-stage in situ fabrication 

technique for the assembly of tunnel junctions at the ends of niobium-proximitized 

BiSbTe nanoribbons is demonstrated. The process presented here allows to grow and 

deposit nanostructures of four different materials completely under UHV (ultra-high 

vacuum) conditions, i.e. in situ. First measurements at ultra-low temperatures were 

performed on tunnel junctions fabricated with this method. Two different models are 

derived and discussed to provide a physical explanation of the features shown in these 

measurements. Additionally, I present quantum transport simulations of such 

proximitized 3D-TI tunnel junctions. 
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1 Introduction 
 

Today we live in the age of the digitalization of information. Never before in human 

history has the processing and transmission of information been so efficient and cost-

effective. This revolution in information processing was facilitated by micro- and 

nanoelectronics. Nanoelectronics, in turn, would not work without the development of 

quantum mechanics making it possible to calculate the behavior of circuits at atomic 

scale. Thus quantum mechanics has become an essential part of modern life. 

Today's computers are engineered by the principles of quantum mechanics. Information 

processing, however, is still purely classical, realized by processing binary states (the 

classical bit) defined as 1 and 0. Information, however, can also be processed by 

following the laws of quantum mechanics. A computer that is capable of processing 

quantum information is generally called a quantum computer. The smallest possible 

information unit of a quantum computer is a qubit (i.e. the quantum analog to a classical 

bit). The qubit is a quantum mechanical two-state system with the states |1⟩ and |0⟩. 

According to the rules of quantum mechanics, the qubit can be in any superposition state 

of the individual states (of the eigenbasis). Only after the measurement the qubit is 

unambiguously fixed to one of the two distinguishable states |1⟩ and |0⟩. It is expected to 

provide a considerable speed advantage in solving certain problems. Especially the 

simulation of quantum mechanical processes [1] (e.g. in chemistry, solid state physics) 

requires huge computational resources on conventional computers and could be 

accelerated considerably on quantum computers. 

However, the realization of a universal quantum computer is extremely difficult and the 

question whether it is even possible to build a quantum computer that offers relevant 

advantages over classical computers can be considered an open research question. The 

biggest challenge in realizing a quantum computer is to maintain the coherence of the 

quantum mechanical state, which encodes the information. Even the smallest disturbances 

affect the quantum states. Such quantum errors hinder the realization of high-performance 

logical qubits that can store information on arbitrarily long time scales. Quantum error 

correction algorithms have been developed to counteract this problem [2]. However, they 

considerably increase the number of physical qubits needed for a calculation. In order to 

realize fault-tolerant quantum processors it is important to make the quantum mechanical 
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state and the operations on it less prone to errors/noise, to reduce the required number of 

physical qubits in the circuit that are needed for error correction. 

A novel class of materials that have caused a small revolution in solid state physics may 

offer the solution. These materials are called TIs (topological insulators) and have the 

special property that their band structure is topologically nontrivial. This means that a 

continuous change of system parameters (e.g., due to disorder or impurities) does not 

affect the physical properties of the material that are determined this nontrivial topology 

(the topological invariant does not change). This results in some extraordinary properties 

that may allow to realize topological quantum computers. So the quantum computer 

realized with these materials inherits basically the protection against disorder or noise 

from the TI [3]. 

Theoretically, it should be possible to transfer the topological properties of the TI to the 

qubits by means of special quasiparticle excitations. These quasiparticles are known as 

MBSs (Majorana bound states) and they follow nonabelian statistics. This nonabelian 

statistics makes so-called braiding possible by swapping MBSs in a register that allows 

the execution of quantum algorithms [4, 5]. The peculiarity about this is that the state of 

the Majorana qubit is encoded in the fermion parity which is shared nonlocally by the 

MBSs. Hence, local disorder or noise do not affect the algorithm or the coherence of the 

state. 

The existence of Majorana particles was first predicted in 1937 by Ettore Majorana [6]. In 

solid state physics so-called MBSs or just “Majoranas” manifest themselves as an equal 

superposition of electron and hole at zero energy. Numerous experiments have been 

conducted to prove the existence of MBSs [7-9]; however, this has been proven to be 

extremely difficult. 

A possible platform for the generation of MBSs are superconducting proximitized TIs. 

The requirements for the fabrication of such structures pose extreme challenges for the 

quality of the materials used as well as for their interfaces [10].  

However, the proof of the existence of MBSs is an important step towards quantum 

computing based on braiding. In this thesis a TI nanoribbon is brought into contact with a 

superconductor. Through a tunnel contact the local density of bound states can be 

resolved at the end of the nanoribbon. Such experiments have already been performed on 
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proximitized III-V semiconductor nanowires [7, 11-15] . A signature for MBS in such 

tunnel experiments is a peak in conductance at zero-bias voltage which has already been 

detected for the III-VI semiconductor nanowires. Even when the challenges of fabrication 

are overcome, the interpretation of ZBP (zero-bias peak) signatures indicating the 

existence of MBSs is difficult as there are numerous physical effects that can cause 

similar results [16, 17]. 

The special feature of the approach used in this thesis is the use of a 3D-TI as well as the 

complete in situ fabrication of the tunnel junction. The great importance of the in situ 

fabrication is supported by previous works [18, 19], which have highlighted the need for a 

high quality interface. 
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2 Theory 

 

In 2001 A. Yu. Kitaev showed theoretically the existence of MBSs in one-dimensional 

(1D) p-wave superconductor. Here, we consider the proposal for realizing a 1D p-wave 

superconductor and MBSs based on proximitized 3D-TIs. By applying a layer of a s-wave 

superconductor to a normally non-superconducting 3D-TI, the topological material 

becomes superconducting at the interface to the superconductor itself. The s-wave 

superconductor induces superconductivity in the TI, which is known as the proximity 

effect. Due to the special properties of TIs, the induced superconductivity has p-wave 

character. To achieve the required one-dimensionality a nanowire (or nanoribbon) made 

of 3D-TI is used. Such TI nanowires have special properties that make it necessary to 

apply an in-plane magnetic field (to close the gap) to realize MBSs in such a nanowire. 

In this chapter the theoretical basics of MBSs in 3D-TI nanowires (or ribbons) are 

explained. Section 2.1 describes the essential properties of 3D-TIs and their typical 

surface states. Section 2.2 explains the basic properties of superconductors. For a 

microscopic understanding the Bogoliubov-de Gennes Hamiltonian is introduced. The 

proximity effect, which is important for the appearance of MBS, is also briefly described. 

For the behavior of NS (normal conductor-superconductor) interfaces, the Andreev 

reflection is essential and is therefore also treated. Section 2.3 briefly explains the basic 

properties of MBSs. Finally, Section 2.4 gives an introduction to tunneling spectroscopy 

to provide a better understanding of the experimental procedure and the interpretation of 

the results. 
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2.1 Topological insulators 

 

The classification of different phases of matter is a common procedure in condensed 

matter physics. For example, the superconducting state can be described as a separate 

phase. This division into phases is done in the usual way with the Landau theory of phase 

transitions. In the last 15 years, a new way of classifying has been established according 

to topological classification [20, 21]. 

In mathematics, the topology describes structures that retain their properties with 

continuous deformation e.g., twisting or stretching. A common picture is that of a cup that 

converts into a torus or donut with the topology being unchanged. A central concept of 

topology is the definition of topological invariants with the help of which it is possible to 

distinguish different topologies. The number of holes in a body is such an invariant. Since 

cup and torus have the same number of holes one can use this invariant to classify these 

objects under the same topology. 

In 1982 Thouless, Kohmoto, Nightingale and de Nijs (TKNN) [22] showed how this 

mathematical concept of topological invariants can be used to explain the integer QHE 

(quantum Hall effect). TKNN showed more precisely that the protected current carrying 

boundary states (1D) for which the QHE is known can be understood in a topological 

view. We consider the Bloch Hamiltonian H(𝐤) whose band structure has a band gap. A 

topology can be assigned to this Hamiltonian using the so-called Chern number, which is 

the topological invariant in this context. As long as the continuous deformations of the 

Bloch Hamiltonian do not close the band gap the Chern number and thus the topology of 

the Bloch Hamiltonian does not change. Hence the Chern number is the equivalent of the 

number of holes in a solid body e.g. a torus. This makes the topology and thus the 

physical properties very robust. TKNN showed that the characteristic Hall conductivity 

associated with the integer QHE is calculated as follows 𝜎𝑥𝑦 = 𝑛𝑒
2/ℎ, where the Hall 

conductivity is directly related to the total Chern number 𝑛 . This explains why the 

quantization of the conductivity of the integer QHE is so robust to interference [3]. For 

example, moderate amounts of disorder cannot change the topology of the Hamiltonian 

because they cannot close the bulk band gap. 
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The Chern number can be understood from the physical point of view using the Berry 

phase 

 γ(C) = i∮⟨𝑢𝑚(𝒌)|∇𝒌|𝑢𝑚(𝒌)⟩ 𝑑𝒌 = 
C

∮𝑨𝑚(𝒌)𝑑𝒌
C

 (2.1) 

where the states |𝑢𝑚(𝒌)⟩ are the Bloch eigenstates of H(𝐤) with 𝑚  the index for the 

occupied bands. The state |𝑢𝑚(𝒌)⟩ accumulates a Berry phase along path 𝐶 in reciprocal 

space. For a closed path 𝐶, the so-called Berry flux 𝑭𝑚 = ∇ × 𝑨𝑚 can be defined. The 

Chern number 

 𝑛𝑚 =
1

2π
∫ 𝑭𝑚
BZ

𝑑2𝒌 (2.2) 

can now be defined as integral over the entire Berry flux 𝑭𝑚 of the Brillouin zone (BZ). 

The Chern number 𝑛𝑚 is quantized and the total Chern number 𝑛 = ∑ 𝑛𝑚
𝑁
𝑚=1  is obtained 

by summing over occupied bands 𝑚 up to the total number of occupied bands 𝑁. In this 

context it is also important to mention that TRS (time reversal symmetry) is broken in the 

system if the Chern number is nonzero. 

The preceding brief description of the QHE was only intended to give a simple 

introduction to the concept. Central in this context is to describe the electronic structure 

of condensed matter systems by means of their topological properties. For TIs, the 

underlying concepts are similar. In comparison to QHE, however, the TRS is not broken 

for TI. This makes it necessary to define a different topological invariant than the Chern 

number (𝑛 = 0 for all TI). TIs are described with topological invariants ℤ2 which can be 

either 0 or 1 with unbroken TRS. For 2D TI a single topological invariant 𝜈0 is sufficient. 

However, the description of 3D-TIs requires four invariants (𝜈0, 𝜈1, 𝜈2, 𝜈3), which results 

in 16 different topological phases (topological equivalence classes for the Bloch 

Hamiltonian) [23]. These 16 different topological phases are divided into weak and strong 

topological isolators on the basis of the invariant 𝜈0 . 3D-TIs with 𝜈0 = 1  possess 

topologically protected states on all 6 surfaces (for one cuboid) and are therefore called 

strong topological isolators. While TIs with 𝜈0 =  0, which are called weak topological 

isolators, do not have topologically protected states on all surfaces. The topologically 

protected surface states (2D) are basically equivalent to the edge states (1D) existing in 

QHE. Since the exact treatment of all these topological phases and the derivation of the 
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topological invariants would go beyond the scope of this thesis, we refer to the work of 

Fu, Kane, and Mele [23] and Moore and Balents [24], Roy [25]. In this thesis only strong 

TIs are used so only their properties are described in the following section. 

TIs get their topologically nontrivial properties from a band inversion at the Γ point. The 

inversion of the bands is caused by three different physical effects, which are normal 

chemical bonds between the elements forming the crystal, the crystal-field effect and 

spin-orbit coupling. All these effects lead to a hybridization of orbitals as shown in Figure 

2.1. The shift in energy levels is so large that the valence band and conduction band are 

reversed at the Γ point. This causes a band inversion and reversed the parity of the bands 

that is shown in Figure 2.2. 

 
 
Figure 2.1: Schematic representation of the orbitals of Bi2Se3 involved in the conduction and 

valence bands and their splitting by effects of chemical bonding, crystal field, and 

spin-orbit coupling at the 𝛤 point. Figure taken from Ref. [26]. 

 

When a material band structure inverted in this way (nontrivial topology) is brought into 

contact with a topologically trivial insulator (this can also be a vacuum), the bands 

 
 
Figure 2.2: Schematic representation of the band inversion of the trivial band gap a) that 

closes b) through the effects shown in Figure 2.1 and opens again c) with 

exchanged orbital character near the point of symmetry. Figure taken from Ref. 

[27]. 
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connect with the same parity via the interface and the connection must therefore cross the 

band gap. This band crossing induces a gapless band structure along the interface with 

surface or edge states that have a metallic character. In other words, the nontrivial 

topology of the bulk Hamiltonian is connected to the appearance of states at the 

boundary, known as bulk-boundary correspondence. The dimension of the band structure 

is one lower as that of the bulk, so a 2D interface for 3D bulk and 1D interface for 2D 

bulk. The TI has surface or edge states that can be directly traced back to its nontrivial 

topology. These are not to be confused with surface states as found in nontopological 

materials (e.g. caused by open chemical bonds). Since these surface or edge states do not 

have a protected gapless band structure that is robust along the whole interface. The 

topological surface and edge states have a linear dispersion and can be described by a 

massless Dirac Hamiltonian [26, 28]: 

 𝐻(𝒌) = ℏ𝑣𝐷(σ𝑥𝑘𝑦 − σ𝑦𝑘𝑥) (2.3) 

Here ℏ is the reduced Planck constant, 𝑣D the Dirac velocity, 𝑘𝑥 and 𝑘𝑦 the wave vectors 

of the electronic states and 𝜎𝑥 and 𝜎𝑦 are the Pauli matrices acting on a spin-1/2 basis. 

The eigenstate spectrum  

 𝐸(𝒌) = ±𝑣Dℏ|𝒌|. (2.4) 

is linear in momentum. Because this dispersion is a rotationally symmetric cone and is 

derived from the Dirac equations it is called a Dirac cone. The bands with positive and 

negative energies described by the last equation meet in a zero-dimensional point called 

the Dirac point. In the simple case described here this is at a momentum of 𝒌 = 0 with an 

energy 𝐸 = 0. 

A closer look at the structure of the energy eigenstates reveals some highly interesting 

transport properties. The spin is uniquely tied to the momentum and the direction of the 

spin is always perpendicular to the direction (spin-momentum locking). Therefore direct 

backscattering (Umklapp scattering) is prohibited if time reversal symmetry is not broken 

(e.g., due to magnetic impurities) because the state at −𝑘 has the orthogonal spin. In 

Figure 2.5 this spin polarization is plotted together with a 2D Dirac cone. These 

properties have caused great interest in TIs. They are now being investigated for a variety 
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of applications, including spintronics, thermoelectronics and of course quantum 

computing. 

In this thesis I investigate MBE (molecular beam epitaxy) grown grow (Bi1-xSbx)2Te3 

ternary (3D-TI material) nanoribbons. The properties of quasi-1D nanoribbons are more 

complicated because the confinement leads to a quantization of a 𝑘  component. The 

topological protection against direct backscattering, for example, disappears in the quasi-

1D case. This fact will be discussed in the following section by considering theoretically 

a cylindrical nanowire. 

 

2.1.1 Topological insulator nanostructures under the influence of a magnetic field 

 

For a quasi-1D nanowire, the surface state Dirac cone transforms into subbands and a gap 

opens at the Dirac point in the dispersion relation. For the calculations shown here, 

cylindrical coordinates are chosen for simplification. A cylindrical nanowire is assumed, 

but the results of the calculations are generally valid for an arbitrary cross-section as long 

as there is a sufficiently large bulk region. At the beginning of the derivation we start in 

normal Cartesian coordinates without an external magnetic field. For this the following 

Dirac Hamiltonian can be used  

 ℎ0 =
𝑣𝐷

2
[ℏ∇ ⋅ 𝒏 + 𝒏 ⋅ (𝒑 × 𝒔) + (𝒑 × 𝒔) ⋅ 𝒏]. (2.5) 

where 𝒏 is a unit vector normal to the nanowire surface, 𝒔 is a vector of the Pauli matrices 

and 𝒑  is the momentum operator 𝒑 = −𝑖ℏ∇  [29]. The cylindrical coordinates are 

naturally chosen such that the radius 𝑟 describes the distance from the center of the wire 

to the surface states. The 𝑧 coordinate is chosen such that it is aligned with the wire. With 

the consideration of the magnetic field and the use of cylindrical coordinates the 

following Hamiltonian is obtained for a cylindrical nanowire 

 ℎ =
1

2𝑟
𝐼2×2 + (𝒏 × 𝛑) ⋅ 𝒔 + 𝒔 ⋅ 𝒎. (2.6) 

With the additional parameter 𝒎 = 𝑚𝑧̂ representing the Zeeman coupling to the external 

magnetic field [30]. In order to take into account the orbital effect of the magnetic field, 
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the momentum operator 𝒑 = −𝑖ℏ∇ is substituted by 𝛑 =  𝒑-(𝑒/𝑐)𝑨 with the magnetic 

vector potential 𝑨, the electron charge 𝑒 and the speed of light 𝑐. This is known as the 

minimal coupling procedure. By choosing these coordinates the following vector 

potential is obtained to describe a magnetic field in 𝑧 direction along the wire 

 𝑨 = ηΦ0(𝑧̂ × 𝒓)/2π𝑟
2. (2.7) 

The total magnetic flux through the wire cross-section is described by Φ = ηΦ0  with 

Φ0 = ℎ/𝑒 the flux quantum. 

The spectrum of this Hamiltonian is 

 𝐸𝑘𝑙 = ±𝑣𝐷ℏ(𝑘
2 +

(𝑙 +
1
2 − η)

2

𝑟2
)

1
2

 (2.8) 

with 𝑚 = 0 since the Zeeman coupling can safely be neglected [30, 31]. Here 𝑘 is the 

momentum along the 1D wire in the z direction and 𝑙 = 0,±1,… is the quantum number 

for orbital angular momentum. For a more detailed derivation, see Refs. [30, 31]. 

 

a) b) 

  

 
Figure 2.3: Plot of the spectrum without (a) and with (b) magnetic field along wire direction. 

Above is shown the corresponding band structure of the surface states. Without 

magnetic field the surface state spectrum has a band gap with a magnetic flux of 

𝛷 = −𝛷0/2 the gap closes. Figure extracted from Ref. [32]. 
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The goal of the thesis is to prove that MBSs are present, which requires that the Fermi 

energy cuts an odd number of bands when superconductivity is proximity induced [29]. 

This is the case in the whole bulk gap when the wire cross section is pierced by a 

half-integer flux quantum and a single subband with gapless linear spectrum appears, as 

can be understood from equation (2.8) and seen in Figure 2.3. 

 

2.1.2 3D topological insulator materials 

 

The preceding descriptions are highly idealized for simplification. To obtain such a 

perfect 3D-TI in reality is quite difficult. An important challenge is to obtain the bulk 

insulation mentioned above. Otherwise, the special transport properties of the surface 

states are covered by the bulk transport and can only be identified with much difficulty in 

transport experiments.  

The two TIs under consideration here, i.e., Bi2Te3 and Sb2Te3 are very similar in their 

crystal structure and both have a rhombohedral crystal structure with space group 𝑅3̅𝑚. 

The unit cell consists of three quintuple layers stacked on top of each other and held 

together by Van der Waals bonds. Figure 2.4 shows the crystal structure and the typical 

quintuple layers. 

Both Bi2Te3 and Sb2Te3 have the problem of a relatively high background doping. Due to 

antisites with Te (Bi is substituted by Te) in the crystal, Bi2Te3 has an n-type doping [33-

37]. Sb2Te3 is p-type doping [34, 35, 38, 39], which is caused by antisites, but in this case 

the Te is replaced by Sb. 

Both materials can be grown using MBE and have nearly identical lattice constants. The 

idea is to combine the two materials to get the possibility to influence the doping. The 

material resulting from this idea is (Bi1-xSbx)2Te3 [34]. By adjusting x it is now possible to 

directly influence the doping and thus the position of the Fermi level. With a 

concentration of x = 0.49 the Fermi level is above the Dirac point. If one increases the 

concentration to x = 0.93 the Fermi level will be at the Dirac point as desired. For pure 

Sb2Te3 so x = 1 the Fermi level is below the Dirac point [40]. These values for x and the 

corresponding position of the Fermi level can only be considered as basic guidelines. 
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Because differences between a flawless and oxidized surface can have a strong influence 

on the position of the Fermi level. 

(Bi1-xSbx)2Te3 is also used in the fabrication of the nanoribbons produced in this thesis. 

(Bi1-xSbx)2Te3 can also be grown selectively with MBE on a [111] silicon surface that is 

partly covered with a hard mask. The exact process for this is described in the chapter 

3 Fabrication process. 

 

 
 
Figure 2.4: a) Crystal structure of the 3D-TI (Bi1-xSbx)2Te3. b) Transmission electron 

microscopy image of a Bi2Te3 layer. Figure adapted from Ref. [26]. 

 

 
Figure 2.5: The dispersion relation of the surface states forming a 2D Dirac cone. Direct 

backscattering (big green arrow) is not possible. Figure extracted from Ref. [32]. 

Spin polarization 
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2.2 Introduction to superconductivity 

 

Superconductivity is a special state of matter in which the electrical resistance disappears 

below a characteristic critical temperature 𝑇𝐶 and critical magnetic field 𝐻𝐶. It was first 

discovered by Kamerlingh Onnes [41, 42], whose work in the field of cryogenic cooling 

with the help of liquid helium made it possible to fall below the critical temperature 𝑇𝐶 of 

mercury in 1911. 

An important property of superconductors is the appearance of a macroscopic quantum 

state that describes a collective of electrons with a single wave function. The 

phenomenological Ginzburg-Landau theory was formulated to describe the macroscopic 

properties of superconductors [43]. In this section an introduction to superconductivity is 

presented with an overview of the most important properties. However, a microscopic 

understanding is only possible with the microscopic BCS theory [44] which is described 

in the next section. 

Superconductivity is primarily known for the resistance-free conduction of electrical 

currents and for historical reasons has thus also been given the name with reference to 

this property. However, it is actually another physical effect of superconductors that 

describes their properties more fundamentally, namely their perfect diamagnetism also 

known as the Meissner-Ochsenfeld effect [45]. 

Superconductors are classified as Type I and Type II depending on their behavior in 

magnetic fields [46]. When a Type I superconductor is exposed to a magnetic field, 

shielding currents are induced which prevent the low magnetic flux from entering the 

superconductor due to the reverse polarity of the induced magnetic field. Only when a 

critical field strength 𝐻𝐶  is exceeded, the superconductivity collapses and so do the 

shielding currents. 

With Type II the behavior is more complex. Before the complete collapse of 

superconductivity, so-called flux tubes are created where the superconductivity has 

collapsed and magnetic flux enters the superconductor. Each of these flux tubes encloses 

a magnetic flux of Φ0 = ℎ/(2𝑒) also known as flux quantum [47]. Above the first critical 

field 𝐻𝐶1, flux tubes are created. If the field strength continues to increase, more and more 

flux tubes are formed until it reaches 𝐻𝐶2, above which superconductivity disappears. 
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2.2.1 Microscopic description and Bogoliubov-de Gennes Hamiltonian 

 

The mechanism causing superconductivity was unknown for a long time. With the BCS 

theory, named after its developers John Bardeen, Leon Neil Cooper and John Robert 

Schrieffer [44], a microscopic description of superconductivity was finally obtained (in 

1957, almost 50 years after discovery of SC). The underlying idea is the existence of an 

attractive interaction between two electrons. This attractive interaction has its cause in the 

electron-phonon coupling [48, 49] and ensures that below the critical temperature 𝑇𝐶 it is 

energetically favorable for the electrons to form so-called Cooper pairs. The Cooper pairs 

condense into a Bosen-like many-particle state at the Fermi energy 𝐸𝐹, into a so-called 

Bose condensate with a macroscopic (describing the whole condensate) wave function 

[46]. Cooper pairs consist of two electrons with opposite spin and momentum. This 

electron pair is coupled by a binding energy Δ. Another important property described by 

the BCS theory is that superconductors open a band gap with width equal to 2Δ. Within 

this band gap there are no states for charge transport through electrons or holes, charge is 

transported exclusively through the Cooper pairs, via a supercurrent with zero resistance. 

The electrons and their electron-phonon-induced pairing interaction can be described 

using mean-field theory with the following Hamiltonian [50] 

𝐻 = ∑ 𝜀𝑠1𝑠2(𝒌)𝑐𝒌,𝑠1
† 𝑐𝒌,𝑠2

𝒌,𝑠1,𝑠2

+
1

2
∑ [∆𝑠1𝑠2

∗ (𝒌)𝑐𝒌,𝑠1𝑐−𝒌,𝑠2 + ∆𝑠1𝑠2(𝒌)𝑐𝒌,𝑠1
† 𝑐−𝒌,𝑠2

† ]

𝒌,𝑠1,𝑠2

 (2.9) 

using the annihilation and creation operators 𝑐𝒌,𝑠 ,𝑐𝒌,𝑠
†

 for the electrons with momentum 

𝒌 and spin 𝑠. The first term consists of the energy operator  𝜀𝑠1𝑠2(𝒌) and the number 

operator 𝑐𝒌,𝑠1
† 𝑐𝒌,𝑠2  of the electrons. The second term describes the interaction of the 

electrons with the superconducting pair potential ∆𝑠1𝑠2
∗ (𝒌).  The pair potential 

∆𝑠1𝑠2
∗ (𝒌) can be written as 

 ∆𝑠1𝑠2(𝒌) = − ∑ 𝑉𝑠1𝑠2𝑠3𝑠4(𝒌, 𝒌
′) 〈𝑐𝒌′,𝑠3𝑐−𝒌′,𝑠4〉 .

𝒌′,𝑠3,𝑠4

 (2.10) 

Here 𝑉𝑠1𝑠2𝑠3𝑠4(𝒌, 𝒌
′) describes the pair interaction. It is then common to write the 

Hamiltonian using a 4 × 4 matrix, resulting in the following form  
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 𝐻 =
1

2
∑

(

  
 

𝑐𝒌,↑
†

𝑐𝒌,↓
†

𝑐−𝒌,↑

𝑐−𝒌,↓)

  
 

𝑇

𝒌

(
𝜀(𝒌) ∆(𝒌)

∆†(𝒌) −𝜀(−𝒌)𝑇
)

⏟            
ℋ4×4(𝒌)

(

  
 

𝑐−𝒌,↑

𝑐−𝒌,↓

𝑐𝒌,↑
†

𝑐𝒌,↓
†
)

  
 

 (2.11) 

 

with the following 2×2 matrices as subblocks 𝜀(𝒌) = (
𝜀↑↑(𝒌) 𝜀↑↓(𝒌)

𝜀↓↑(𝒌) 𝜀↓↓(𝒌)
)  and 

∆(𝒌) =  (
∆↑↑(𝒌) ∆↑↓(𝒌)

∆↓↑(𝒌) ∆↓↓(𝒌)
). 

The 4 × 4 matrix ℋ4×4(𝒌) used is called Bogoliubov-de Gennes Hamiltonian. Using the 

so-called Bogoliubov-de Gennes equation  

 ℋ4×4(𝒌)

(

 

𝑢↑(𝒌)
𝑢↓(𝒌)

𝑣↑
∗(𝒌)

𝑣↓
∗(𝒌))

 = 𝐸(𝑘)

(

 

𝑢↑(𝒌)
𝑢↓(𝒌)

𝑣↑
∗(𝒌)

𝑣↓
∗(𝒌))

  (2.12) 

 

we can define Bogoliubov-de Gennes quasiparticles that represent hole-like and 

particle-like quasiparticles in the superconductor. It is then possible to determine the 

eigenenergies of these quasiparticles described by ℋ4×4(𝒌)  by diagonalization. 

Eigenenergies 𝐸1(𝒌), 𝐸2(𝒌), −𝐸1(−𝒌),−𝐸2(−𝒌) are obtained. As mentioned above, the 

pairing potential ∆(𝒌)  couples particles (electrons) and holes. The solutions 

𝐸𝑖(𝒌) (𝑖 =   1, 2) are the eigenenergies of Bogoliubov-de Gennes quasiparticles and are a 

mixture (superposition) of particles (electrons) and holes. The solutions spectrum of these 

quasiparticles is also symmetric around 𝐸 = 0 due to the particle-hole symmetry. It is 

also important to note that the Cooper pairs themselves are only described by the pairing 

potential ∆(𝒌), which is proportional to the density of Cooper pairs, as can be seen from 

Equation (2.10), and are not included in the quasiparticle spectrum of the Bogoliubov-de 

Gennes Hamiltonian itself. 

For 𝜀(𝒌) the Bloch Hamiltonian of specific materials can be used, for example a free 

electron gas or the Hamiltonian of a 3D-TI. This will be relevant in the later chapter 4 to 

obtain the Hamiltonian of a topological superconductor. 
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2.2.2 Andreev reflection 

 

Here I would like to briefly consider an important effect that occurs at NS interfaces. The 

first question that arises is what happens when an electron with an energy smaller than the 

superconducting band gap ϵ <  Δ hits the superconductor. For this question, Figure 2.6 is 

helpful in the schematic representation with ϵ =  0 in the middle of the superconducting 

gap Δ. Within the superconducting band gap there are no individual electronic states (only 

the Cooper pair condensate at zero energy). The electron can only enter the 

superconductor when paired with another electron. In the case that a conduction band 

electron meets the superconductor, it pairs with an electron (with opposite spin) from the 

valence band. For the electron taken out of the valence band, a hole moves away from the 

superconductor with opposite momentum. In an alternative physical image, the incident 

electron is reflected as a moving hole (Figure 2.6(b)). In addition, a new Cooper pair has 

formed in the superconductor. The inverse process in relation to the previous description 

is also possible. Here, a hole with the energy −ϵ hits the superconductor (Figure 2.6(a)) 

and is reflected back as an electron, whereupon a Cooper pair is absorbed in the 

superconductor. The processes are known as Andreev reflection (Figure 2.6(b)) and 

reverse Andreev reflection (Figure 2.6(a)) [51]. 

a) b) 

  

 
Figure 2.6: a) A hole is Andreev-reflected as an electron at the SN interface and a Cooper pair 

is "absorbed" from the superconductor. b) An electron is Andreev-reflected as a 

hole at the SN interface and a new Cooper pair is generated in the superconductor. 
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2.2.3 Proximity effect 

 

In this thesis MBSs will be investigated. As already mentioned in the introduction, they 

can form in so-called p-wave superconductors. One way to get such a p-wave 

superconductor is to bring a TI into contact with an s-wave superconductor. The s-wave 

superconductor then induces superconductivity in the TI at the interface, which is called 

the proximity effect [52]. 

In this consideration we distinguish between the coherence length 𝜉𝑆  and 𝜉𝑁  in the 

superconductor and in the normal conductor. Cooper pairs have a typical extension 

proportional to their coherence length ξ𝑆.  There are two limit case regimes for the 

description of the proximity effect at an SN interface the so-called clean and dirty limits 

[51, 53].  

For the clean limit 𝑙mean ≫ ξ𝑁 in this case the coherence length ξN is given by 

 ξ𝑁 ≈
ℏ𝑣F

2π𝑘B𝑇
. (2.13) 

with the mean free path of the electrons 𝑙mean, the Fermi velocity 𝑣F (Dirac velocity 𝑣D if 

TI surface states are proximitized), temperature 𝑇 and the Boltzmann constant 𝑘B. 

The reverse limit case is the dirty limit case, which in this case means that 𝑙mean ≪ ξ𝑁. In 

this case the coherence length ξN is given by  

 ξN ≈ (
ℏ𝐷N

2π𝑘B𝑇
)

1
2
. (2.14) 

In this context, 𝐷N is a material-dependent diffusion constant for the normal conductor. 

Considering the Cooper pair binding energy 𝜖 = 2π𝑘B𝑇  [54] we can see that the 

coherence length decreases with increasing energy.  

The proximity effect can also be understood by considering the reverse Andreev 

reflection process. If the hole absorbed by the superconductor is considered as reflected 

electron. In this image, a Cooper pair splits into two electrons when entering the normal 

conductor. Due to the different energies of the electron and consequently different wave 

vectors, the two electrons accumulate a phase difference [54]. If this phase difference 
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exceeds 𝛿𝜑 = 𝜋 the electrons are no longer correlated. The energy-dependent coherence 

length, which indicates from which penetration depth into the normal conductor the phase 

difference 𝛿𝜑 = 𝜋 is exceeded, is L𝜀 = √ℏD/𝜀. If the energy is at the position of the 

Fermi level 𝜀 = 𝐸F  the coherence length would go towards infinity in this case it is 

limited by the phase-breaking length 𝐿𝜑 [54] of the normal conducting region. 

 

2.3 Majorana bound states 

 

The Majorana bound state takes its name from the Italian physicist Ettore Majorana. In 

1937, he reformulated the Dirac equations and found new solutions that described 

particles being their own antiparticles [6], which were named after him, i.e., Majorana 

fermions. A. Yu. Kitaev in 2001 predicted them as a quasi-particle version, so-called 

Majorana bound states (MBSs) or Majorana zero modes (MZMs), in condensed matter 

physics [55]. More specifically, for a one-dimensional (1D) p-wave superconductor.  

Of particular interest in this thesis is that by combining the properties of TIs and 

superconductors, a topological p-wave superconductor can be realized [3, 56]. In these 

topological p-wave superconductor a special type of subgap-bound state exists which can 

occur at its boundaries or at topological defects such as vortices or domain walls. 

These states occur at zero energy and the second quantization operators that describe 

these states are self-conjugated γ𝑖
† = γ𝑖  and γ𝑖

2 =1. Thus they share the 

particle-equal-antiparticle property of the famous Majorana fermion [57]. It is important 

not to consider 𝛾𝑖 as a particle operator because in the context shown here occupied or 

unoccupied makes no sense for 𝛾𝑖 . Rather 𝛾  and the corresponding MBS should be 

considered as an exotic quasi-particle excitation representing one half of a fermionic 

state. More precisely, a couple of MBSs 𝛾1 and 𝛾2 can be combined to a regular fermionic 

state 𝑓 = (γ1 − γ2)/√2 for which a number operator is well defined. The MBSs 𝛾1 and 

𝛾2 resulting from its combination 𝑓 can theoretically be located arbitrarily far away from 

each other. So 𝑓 has a strong non local character although 𝑓 is a normal fermion operator, 

which satisfies the canonical anticommutation relations. Furthermore the state represented 

by 𝑓 can be filled or emptied without the need of energy. This results in a degeneracy of 

the ground-state energy when multiple MBS pairs are present in the system [58]. The 
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individual MBSs can be moved around (each other) and display peculiar exchange 

statistics, namely non-abelian statistics. The exotic quasi-particle excitation that MBSs 

represent are therefore anyons and not fermions. 

This quantum statistical property makes MBSs a promising platform for fault-tolerant 

quantum computing. The quantum information of the fermionic state is encoded in pairs 

of MBSs γ1 and γ2 that can be spatially separated, which protects the information against 

local disorder or noise. Together with the anyon statistics that allow the manipulation of 

the quantum state or information via braiding, this makes MBSs highly interesting for the 

realization of fault-tolerant quantum computation [4, 5]. 

However, an important step towards a quantum computer based on MBSs is first of all to 

demonstrate their appearance and robustness. In this thesis I try to do just that by tunnel 

spectroscopic investigations on a superconducting proximitized 3D-TI nanoribbon. 

 

2.4 Tunneling spectroscopy 

 

To detect MBS at the end of a nanowire or nanoribbon, tunnel spectroscopy can be used. 

This is a method in which a tunnel conductance is measured between a normal conductor, 

a tunnel barrier, and a superconductor. Since the tunnel conductance measured is 

proportional to the local density of states behind the tunnel barrier, a MBS can be 

detected. The MBS allows resonant Andreev reflection over the tunnel barrier and thus is 

expected to show up as a conductance peak quantized to 2𝐺0  at ZBP at very low 

temperatures. For elevated temperatures the height of the peak is reduced. Experiments 

based on this method have already been successfully performed [7, 11-15]. 
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For the derivation of the tunnel conductance we start with the Landauer-Büttiker 

formalism in which we consider the current through the normal conductor/contact as the 

sum of three different contributions 

 

 

𝐼(e) = −
𝑒

ℎ
∫d𝐸 𝑓(𝐸 + 𝑒𝑉bias)[𝑁(𝐸, 𝑉bias) − 𝑅ee(𝐸, 𝑉bias)], 

𝐼(h) =
𝑒

ℎ
∫d𝐸 𝑓(𝐸 − 𝑒𝑉bias)𝑅eh(𝐸, 𝑉bias) 

=
𝑒

ℎ
∫d𝐸 [1 − 𝑓(𝐸 + 𝑒𝑉bias)]𝑅he(𝐸, 𝑉bias), 

𝐼(sc) = −
𝑒

ℎ
∫d𝐸 𝑓(𝐸)𝑇es(𝐸, 𝑉bias), 

(2.15) 

 

where 𝐼(e) and 𝐼(h) are the electron and hole currents going into the superconductor. The 

chemical potential is set to zero as reference point for the bias voltage (this does not mean 

that chemical potential is at the Dirac point energy). 𝐼(sc)  is the quasiparticle current 

through the superconductor and 𝑓 is the Fermi distribution. 𝑁 is the number of electron 

modes in the normal conductor contact, 𝑅ee is the electron reflection amplitude, 𝑅eh is the 

Andreev reflection amplitude and 𝑇es is the transmission amplitude of modes above the 

superconductor gap [59]. 

The total current then adds up to the well-known BTK (Blonder-Tinkham-Klapwijk) 

formula 

 
𝐼 =

𝑒

ℎ
∫d𝐸 [𝑓(𝐸) − 𝑓(𝐸 + 𝑒𝑉bias)][𝑁(𝐸, 𝑉bias) − 𝑅ee(𝐸, 𝑉bias)

+ 𝑅he(𝐸, 𝑉bias)]. 
(2.16) 

 

The differential conductance hat is relevant for comparison with the results of the 

experiment is then 

 

𝐺 =
d𝐼

d𝑉bias
=
𝑒2

ℎ
(𝑁(−𝑒𝑉bias, 𝑉bias) − 𝑅𝑒𝑒(−𝑒𝑉bias, 𝑉bias)

+ 𝑅he(−𝑒𝑉bias, 𝑉bias)) 

−
𝑒

ℎ
∫ d𝐸 [

𝜕𝑅he(𝐸, 𝑉bias)

𝜕𝑉
−
𝜕𝑅ee(𝐸, 𝑉bias)

𝜕𝑉
]

−𝑒𝑉bias

0

 

(2.17) 
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in the limit case for 𝑇 towards 0. In the linear response limit, the integral can be neglected 

[59] thus resulting in 

 
𝐺 =

d𝐼

d𝑉bias
=
𝑒2

ℎ
(𝑁(−𝑒𝑉bias, 𝑉bias) − 𝑅𝑒𝑒(−𝑒𝑉bias, 𝑉bias)

+ 𝑅he(−𝑒𝑉bias, 𝑉bias)). 

(2.18) 

 

It must be considered that 𝑅𝑒ℎ~𝜌𝐴𝐵𝑆 and (𝑁 − 𝑅𝑒𝑒)~𝜌𝑞 with 𝜌𝐴𝐵𝑆 being the density of 

Andreev bound states and 𝜌𝑞  being the quasi-particle density of states. Together it is 

possible that with the differential conductance d𝐼/d𝑉  the 𝜌𝐴𝐵𝑆  in the gap and 𝜌𝑞  are 

resolved. A quantized ZBP can be created with the presence of a MBS, since resonant 

tunneling with perfect probability for Andreev reflection via the MBS is possible. 
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3 Fabrication process 

 

In the previous chapter, it was explained theoretically which requirements our device has 

to meet. This section explains how these can be implemented in a real device. Problems 

that arose during fabrication and approaches to solving them are also discussed. 

The underlying motivation for the tunnel junction is the detection of so-called MBS, a 

quasiparticle state which was explained in more detail in the section 2.3. Signatures of 

MBS have already been found in III-V semiconductor based tunnel junctions. However, 

the tunnel junction shown in Figure 3.1 uses a 3D-TI instead of a semiconductor.  

Since TIs are sensitive to surface degradation (described in more detail in Section 3.1), 

they posed numerous challenges to the manufacturing process, including in-situ 

fabrication, alignment, mask removal, and selective area growth (SAG). However, this 

effort should be worthwhile as 3D-TIs should provide an energetically much wider 

topological gap compared to III-V semiconductors [60]. 

As shown in Figure 3.1, the tunnel junction consists of different components, which are 

produced in different manufacturing steps. From the previous theory chapter we know 

that we need a 3D-TI nanoribbon (blue), superconducting contacts (top, red), normally 

conducting contacts (sides, turquoise) and a tunnel barrier (between TI and N). With the 

choice of the materials and geometries used for these parts, there are numerous possible 

variations. However, the basic structure of a tunnel junction always corresponds to the 

schematic representation shown in Figure 3.1. 

A major problem is the need for a tunnel barrier because the TI cannot be depleted via a 

gate. This is prevented by the topological nature of the material itself, A tunnel barrier 

must therefore be physically created by introducing a dielectric. Unlike the tunnel barrier 

created by the gate in semiconductors, the thickness of the tunnel barrier created by a 

dielectric is not tunable after fabrication. 

It is crucial that the quality of the TI superconductor interface is guaranteed. For this 

purpose all process steps after growth of the TI until the TI is protected by a capping are 

carried out in situ. The process allows the TI surface to be protected against degradation. 

This is enabled by the stencil lithography process and selective area growth of TI 
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presented in Ref. [10]. A more detailed explanation of the individual process steps 

follows in the sections of this chapter. At this point I would like to thank Michael 

Schleenvoigt, who performed the growth described in section 3.3. 

 
 
Figure 3.1: Three-dimensional schematic representation of the TI tunnel junction. The TI is dark 

blue, the normal conductor is shown in turquoise, the superconductor in red and the 

substrate in grey. The position of the tunnel barrier is marked by a black line. The 

shadow mask is not shown for simplification. 

 

3.1 Surface degradation 

 

It has already been emphasized that the motivation behind the choice of an in situ 

manufacturing process is the surface degradation of the TI. In the following, this process 

will be briefly described. The peculiarity of TIs are their protected surface states. 

However, these surface states can be protected by suitable passivation layers on the 

surface of the TI by other states. 

Oxidation on the surface [18, 19] of the (Bi,Sb)-based TI lead to the formation of 

nontopological states. A similar effect has been proven for the exposure to water vapor 

[61]. Contact with water induces a chemical reaction at the surface. This causes a band 

bending which shifts the Dirac point deep into the occupied states and thus creates 

Tunnel contact with barrier 
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quantum well states with Rashba-type splitting on the surface. These states coexist with 

the topological states. This finding is based on angle-resolved photoemission 

spectroscopy (ARPES) measurements. In addition, the reaction causes an n-type doping 

of the TI. 

To prevent surface degradation, an Al2O3 passivation is often used. Signatures in SdH 

(Shubnikov-de-Haas) oscillations and WAL (weak anti-localization) effects due to 

topological surface states could be better resolved by applying an in situ passivation with 

Al2O3 by MBE [62]. An Al2O3 passivation also appears to lower the carrier concentration 

[63]. 

Surface degradation is the central motivation for the in situ fabrication of the tunnel 

junction. In the following sections I will explain how to fabricate the stack of SiO2 and 

Si3N4 layers necessary for stencil lithography and selective area epitaxy. How these layers 

are then used to define masks needed for in situ patterning during growth and deposition 

processes in the MBE chamber. 

 

3.2 Fabrication of a selective area epitaxy mask and a mask for stencil 

lithography 

 

The process described here combines the possibilities of selective area epitaxy. As well as 

the production of masks for stencil lithography of different materials. The process shown 

in the following is largely based on the work of D. Rosenbach [64], T. Schmitt [65] and 

P. Schüffegen [10, 32] on in situ structuring of superconductors with stencil lithography. 

The new technique developed in this thesis is to deposit two different metals at two 

different positions using a single mask for stencil lithography. This makes it possible to 

contact the tunnel junction in situ with a superconductor and a normal conductor. 

 

3.2.1 Substrate fabrication 

 

The substrate produced by the process described in this section was provided by Tobias 

Schmitt. In order to describe the complete fabrication of the tunnel junction, the 



3 Fabrication process 

 

25 

 

individual steps required to fabricate the substrate are also described in detail here. This 

substrate allows for selective growth, i.e. it defines the areas where the TI will grow later 

selectively. Figure 3.2 shows the cross section of the substrate after its individual process 

steps. 

 

      a) b) 

  

c)  

 

 

 
 
Figure 3.2: Cross-section of the substrate according to selected process steps. a) The Si 

substrate with the first SiO2 and Si3N4 layers. b) After etching of nanotrenches in 

the Si3N4 layer for selective growth. c) After applying SiO2 and Si3N4 for the 

shadow mask. 

 

The process starts with a Si(111) wafer. The surface of the wafer is exposed to a cleaning 

process to ensure subsequent growth of the TI on the Si(111) surface of the wafer. The 

following cleaning process is applied; first, the wafer is bathed in piranha solution 

(mixture of 96% sulfuric acid (H2SO4), and 31% hydrogen peroxide (H2O2) in a ratio of 

2:1) for 10 min. Subsequently, it is rinsed in DI (Deionized) water for 10 min. This is 

followed by etching with 1% HF (hydrofluoric acid) solution for 10 min and again rinsed 

in DI water for 10 min. 

With thermal oxidation, a 5 nm thick SiO2 layer is applied to the Si(111) wafer surface 

cleaned in the previous step. On this SiO2 layer a 20 nm thick Si3N4 layer is applied. The 

result of these two steps is shown in Figure 3.2(a). The Si3N4 layer is deposited with low 

pressure chemical LPCVD (low pressure chemical vapour deposition), which allows 

sufficient etch selectivity between the SiO2 and the Si3N4 layer for etching with 1% HF 

solution. On this Si3N4 layer it is now possible to define the nanotrenches for the 
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subsequent selective area growth of the TI using an EBL (electron beam lithography) 

process and RIE (reactive ion etching). The result is shown in Figure 3.2(b). 

However, this layer stack has so far only allowed selective growth of the TI. The stencil 

lithography mask is still missing, which allows the in situ production of the contacts. For 

this purpose the layer stack is extended by two additional layers which are added after 

etching the trenches into the 20 nm thick Si3N4. These layers are another SiO2 layer with 

a thickness of 300 nm and a 100 nm thick Si3N4 layer. Both layers are generated with 

LPCVD. The result is shown in Figure 3.2(c). The substrate for the growth of 

nanoribbons and the fabrication of a mask for stencil lithography is now ready. 

 

3.2.2 Electron-beam lithography and reactive-ion etching 

 

This section describes how the geometry of the mask for stencil lithography is defined by 

an EBL process and RIE (reactive-ion etching) of the top Si3N4 layer. In the previous 

section 3.2.1, the structuring of a Si3N4 layer was already required for the selective area 

epitaxy mask. The procedure used is identical to the one described here, except for a 

possible variation of the etch time of the RIE. 

The process starts with the application of a resist suitable for nanostructures and EBL 

(electron-beam lithography) processes. For the nanostructures in this work, the spinning 

of AR-P 6200.09 (Allresist GmbH) was chosen. Before spin coating, the sample is 

cleaned by bathing in acetone, IPA (isopropanol) and DI water for 5 min each (order: 

acetone, IPA, DI). After blowing off with nitrogen, the sample is placed on a 100 °C 

hotplate for 5 min to remove any remaining water. 

After this cleaning, the resist is spin coated for 45 s at a speed of 6000 s
-1

 and an 

acceleration of 4000 s
-2

. After the spin coating, a so-called softbake is performed and 

residual solvents are evaporated. For this purpose, the sample is placed on a 150 °C hot 

heating plate for 1 min. 

The resist layer applied in this way can now be structured by an electron beam. To 

develop the resist, the sample is immersed for 1 min in AR 600-546 (Allresist GmbH) at 

0 °C. The developer is then removed by bathing twice in IPA for 30 s each. IPA is 
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prepared in two separate beakers for this purpose. To remove IPA residues, the sample is 

briefly immersed in DI water again and can then be blown off with nitrogen. 

It is now possible to etch structures in the Si3N4 layer. Reactive-ion etching (RIE) is used 

because it has a very good anisotropy of the etch direction. The individual steps for the 

resist processes are listed in Table 3.1. The exact process parameters for RIE process can 

be found in Table 3.2 and EBL parameters in Table 3.3. A SEM image of the stencil after 

RIE is shown in Figure 3.4. 

After the RIE, the resist must be removed. For this purpose, the sample is submerged with 

ultrasound in the resist remover AR 600-71 for 10 min. To take off the resist remover, the 

sample is bathed in IPA for 5 min. It is then blown dry with nitrogen. To remove any 

remaining resist, an oxygen plasma ashing process is performed with a power of 600 W 

and a gas flow of 600 sccm for 5 min. 

The result of this step can be seen in Figure 3.3 and Figure 3.4. Indirectly, the geometries 

of both metals, namely the superconducting and normal conducting electrodes, are also 

defined by the shadow cast by the mask in the later MBE process. 

 
 

 
 
Figure 3.3: Result of the EBL and RIE process to define a mask for stencil lithography. 
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Figure 3.4: SEM image of the stencil hard mask of Si3N4 (gray) after the RIE etching and 

cleaning, the trench for selective growth is here covered by SiO2 (black) and 

therefore not visible.  

 

The sample must be cleaned before growth. The piranha solution cleaning method 

mentioned above is used for this. This means the sample is placed in piranha solution for 

10 min and then in DI water for 10 min. 

This is followed by an underetching step in which all SiO2 up to the nanotrench is 

removed. This is combined with the creation of the hydrogen passivation of the Si(111) 

layer immediately before growth in the MBE chamber. This results in a total etching time 

of 18.5 min in 1% HF solution. The substrate now has the appearance shown in Figure 

3.5, Figure 3.6 and Figure 3.7 with the hydrogen passivated Si(111) surface in the 

nanotrench. The next steps for the sample are explained in section 3.3.1 on MBE growth 

of the TI. 

 

 

 
 
Figure 3.5: a) Sample after underetching of the shadow mask including removing the 5 nm 

SiO2 protective layer. 

 

2 μm 

Si3N4 stencil mask 

SiO2 
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Figure 3.6: SEM image of the hard mask for the production of the tunnel junction which was 

underetched with 1% HF solution. A zoom-in of the region in the red box is shown in 

Figure 3.7. 

 

 
 
Figure 3.7: A closer section of the hard mask shown in Figure 3.6 (red box) here shows the area 

for the deposition of the superconductor (Nb) on the left. The nanotrench for selective 

growth can also be seen within this range. The area for the normal conductor can be 

seen on the right-hand side. 

 

Si3N4 stencil mask 

nanotrench 

Si3N4 stencil mask 

400 nm Si3N4 SAG mask 

2 𝜇𝑚 

Si3N4 SAG mask 
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Process steps 

Cleaning 

5 min aceton  

5 min IPA 

5 min DI water 

Dehydration 5 min @ 100°C 

resist AR-P 6200.09 

Spin coating 6000 min
-1

, 4000 s
-2

, 45 s 

Softbake   1 min @ 150°C 

EBL process (Table 3.3) 

Development 60 s @ AR 600-546 (0°C) 

Development stop 2 x 30 s IPA 

RIE process (Table 3.2) 

Resist removal 

10 min AR 600-71 

5 min aceton 

5 min IPA 

Oxygen plasma cleaning 
5 min, 600 W, 600 sccm 

without Faraday cup 
 

 
Table 3.1: Resist processes for in situ tunnel junction. The basis is the process described in 

Ref. [65]. Different process parameters were adapted to enable EBL with 100 kV 

acceleration voltage. 

 

Process steps 

Machina HNF RIE 5 

RIE process Etching the Si3N4 hard mask 

etch
in

g
 

Gas / flow [sccm] CHF3 / 55 + O2 /5 

rf power [W] 25 

ICP power [W] 100 

Time [min] 3 
clean

in
g

 

Gas / flow [sccm] Ar / 100 + O2 / 50 

rf power [W] 50 

ICP power [W] 1800 

Time [min] 10 
 

 

Table 3.2: RIE processes for in situ tunnel junction. The RIE process was developed by 

Tobias Schmitt [65] and is listed here again for completeness and 

reproducibility. 
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equipment RAITH EBPG5200 

EBL parameter fine coarse 

acceleration voltage [kV] 100 100 

step size [nm] 2 20 

dose [𝜇C/cm
2
] 4x140 4x140 

write current 500 pA 40 nA 

defocus no no 

high resolution mode no no 

proximity correction on on 

multi- path on on 

 
Table 3.3: EBL parameters to write the mask layout for in situ tunnel junction. 

 

3.3 Ultra-high vacuum lithography 

 

3.3.1 Selective area epitaxy of the topological insulator 

 

Selective surface growth is based on the use of different material surfaces that have 

different sticking coefficients due to the chemical properties of the surfaces. As a result, 

the material to be grown has different growth temperature windows for nucleation on the 

different surfaces. 

In previous studies it was found that selective growth of (Bi,Sb)-based TIs is possible [66, 

67]. A mask of SiO2 and Si3N4 can be produced on a Si(111) substrate [10]. This will 

result in a desired TI film growth on an Si(111) surfaces, whereas with suitable growth 

parameters, no nucleation of TI takes place on the SiO2 and Si3N4 surfaces. The different 

growth temperatures of TI on the surfaces of SiO2 and Si3N4 compared to the 

Si(111)-surfaces are simply due to the fact that SiO2 and Si3N4 have an amorphous 

surface. 

It’s challenging to find the right temperature to determine the temperature window in 

which the desired film growth occurs on the Si(111) surface. Also a careful cleaning of 

the substrate before growth is of great importance because even the slightest 

contamination can strongly influence growth. 

In order to contact the structures grown with the selective area epitaxy mask in situ, a 

mask for stencil lithography will be integrated on the chip before growth, too. The 
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fabrications of the selective area epitaxy mask and the mask for stencil lithography have 

been explained in detail in the previous sections. In the following, the TI growth in the 

MBE chamber will be described. 

The samples are placed in the MBE chamber as soon as possible after the underetching 

described at the end of section 3.2.2. Because hydrogen passivation is not maintained for 

a long period of time, in order to protect the Si(111) surface from exposure to normal 

ambient air. After introducing the sample into the growth chamber, it is heated up to 

700 °C for 20 min to remove the hydrogen passivation layer. During this time the effusion 

cells are heated to the temperatures required for growth. The shutters in front of the 

effusion cells are closed during this time. During the actual growth, the sample is rotated 

at 10 rpm and adjusted to a temperature that allows for selective growth. This SAG 

temperature window is relatively small, so that a precise setting of the sample temperature 

has a strong influence on the selectivity. A substrate temperature of 220 °C was chosen 

for the growth of the (Bi1-xSbx)2Te3 nanoribbon. The temperatures of the effusion cells for 

the TI growth can be found in Table 3.4. The device can be seen in Figure 3.8 after 

successful growth of the TI (indicated in blue) in the nanotrench. 

 

a) b) 

 

 
 

 

 
 
Figure 3.8: a) Schematic cross-section of the sample along the individual dotted lines in (b). 

b) Colorized SEM image of the sample after growth of TI. 
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3.3.2 Manufacturing of metal contacts and tunnel barrier via stencil lithography 

 

The metal contacts are evaporated in the metal MBE chamber of the HNF nanocluster. 

Since the two separate MBE chambers for TI growth and deposition of the metal contacts 

are connected by a UHV transfer system, the sample can be transferred in situ. At the 

beginning of this work no MBE chamber for TI growth was connected to the UHV 

transfer system. At that time, the TI had to be grown in a completely separate MBE 

chamber. This required the use of a vacuum suitcase to transfer the sample into the MBE 

chamber for deposition of the metal contacts. One of the disadvantages of such a vacuum 

suitcase is the time required for the transfer compared to the UHV transfer system. 

In the metal MBE chamber, the superconducting contact can now be applied using 

EBPVD (electron-beam physical vapor deposition). For this purpose the sample is rotated 

to the electron beam evaporator so that deposition from the direction shown in Figure 3.9 

occurs. As the molecular beam arrives at an azimuth angle of 32.5°, a shadow is cast 

through the mask. 

  

 TBi TSb TTe 

Effusion cells main 460 °C 410 °C 380 °C 

Tip 600 °C -- -- 

Valve -- 440 °C 500 °C 

Cracker -- 1000 °C 1000 °C 
 

 
Table 3.4: Temperatures for the MBE growth of (Bi0.6 Sb1-0.94)2Te3. 
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a) b) 

 

 
 

 

   
 
Figure 3.9: a) Schematic cross-section of the sample along the individual dotted lines in (b). 

b) Colorized SEM image of the sample with superconductor (Nb) deposited from the 

direction of the black arrow. 

 

Via EBPVD a layer of Al2O3 is applied as dielectric for the tunnel barrier while the 

substrate is rotated to achieve a uniform Al2O3 coverage. The target thickness for the 

tunnel barrier at the contact is between 1 nm to 3 nm, taking into account that shading 

effects from the mask can also have a strong influence on the deposition rate, see 

section 3.5. 

The normal-conducting contacts are applied according to the same principle as the 

superconductor, with the exception that by rotating the sample the molecular beam comes 

from the opposite direction. This results in a shadow cast corresponding to the mask. The 

shadow should be placed at the end of the TI separation. This process is shown in Figure 

3.10. 

  

Deposition direction 
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a) b) 

 

  
 

 
 
Figure 3.10: a) Schematic cross-section of the sample along the individual dotted lines in (b). 

b) Colorized SEM image of the sample with normal conductor (Pt) deposited from 

the direction of the black arrow. 

 

As a last growth step an Al2O3 layer is applied as a capping to protect the tunnel junction 

from air and other influences. The MBE growth parameters for the Al2O3 and the metal 

contacts are listed in Table 3.5. 

 

Material Tsubstrat Rdeposition d rotation 

Nb 50 °C 0.19 nm/s 30 nm no 

Al2O3 50 °C 0.07 nm/s 2.5 nm 20 rpm 

Pt 50 °C 0.01 nm/s 30 nm no 

Al2O3 50 °C 1.07 nm/s 5 nm 20 rpm 
 

 
Table 3.5: MBE parameters for the growth of metal contacts and Al2O3. The indicated 

thicknesses 𝑑 are only given as an example and have been adjusted depending on 

the sample. 

 

  

 

Deposition direction 
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3.4 Stencil mask optimization 

 

The first completed samples showed some problems. These were solved by optimizing 

the layout for the mask. 

In the first samples the alignment of the normal conducting contacts were not optimally 

aligned to the end of the TI ribbons. The alignment of the normal conducting contacts 

could be further optimized in both horizontal and vertical direction. 

As shown in Figure 3.11, the generated bridge between the areas of normal and 

superconducting contact of the mask is too narrow and therefore too unstable. Even slight 

mechanical stresses in the mask are sufficient to cause the bridge to tear and thus damage 

the mask. It is therefore necessary to increase the width of this bridge. However, 

increasing the width of the bridge may directly conflict with the alignment of the normal 

conducting contact. Also, shortening the superconducting contact in the horizontal 

direction to increase the width of the bridge must be done with care to avoid oversizing 

the ends of the TI ribbon that are not covered by the superconductor. 

 
 
Figure 3.11: Broken Si3N4 stencil mask bridge between the regions of the normal conductor 

and the superconductor due to stresses in the mask.  

 

Both problems can be solved by optimizing the layout geometry. Therefore a dose test 

tailored to the tunnel junction was performed. This test was necessary anyway because 

100 nm 

Crack 
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the electron beam system used for lithography was upgraded from an acceleration voltage 

of 50 kV to 100 kV. This required a re-determination of the dose used for the EBL 

process. 

The layout for the dose test was created using the Klayout [68] Python (programming 

language) package and a self-written Python script. This allowed the layout to be defined 

in a program script that automatically generates the individual structures for the dose test. 

In this way many structures with different distances to the trench end could be 

investigated without further design effort. Figure 3.12 shows the dose test sample before 

underetching and Figure 3.13 after underetching with 1% HF solution. 

 
 
Figure 3.12: Structures of the dose test after RIE etching.  

 

 
 
Figure 3.13: Structures of the dose test after 1% HF solution underetching.  

 

After RIE etching and underetching of the mask with 1% HF solution, this allowed to 

determine the optimal spacing for bridge and alignment in combination with the dose to 

be used for the EBL process. 

In Figure 3.14 and Figure 3.15 the results of the optimizations are shown, as well as the 

bridges that are intact and the improved alignment compared to the first version of the 

layout.  

4 μm 

4 μm 
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Figure 3.14: SEM image of the tunnel junction after MBE growth. The image shows the stencil 

mask layout used for tunnel junction with two normal conductors and one 

superconductor contact. 

 

 
 
Figure 3.15: SEM image of an end of the tunnel junction after MBE growth taken at an angle   

(image taken by Tobias Schmitt).  

2 μm 

500 𝑛𝑚 



3 Fabrication process 

 

39 

 

 

3.5 Estimation of the tunnel barrier thickness 

 

A rough estimate for the thickness of the deposited tunnel barrier was calculated using a 

Python script. The script illuminates a polygon that corresponds to the layout of the hard 

mask. The shadow cast by the hard mask after a substrate rotation is then calculated from 

this polygon. A grid of points is placed over this polygon and then projected onto the 

substrate. This results in a shift of the projected point due to the molecular beam angle of 

32.5°. The angle θ is the angle of incidence of the molecular beam. The angle ϕ describes 

the state of rotation of the substrate. The simple transformation matrix 𝑇̅(θ, ϕ) shown in 

equation (3.1) is made possible by the fact that the molecular beams can be assumed to be 

parallel. 

 

𝑃F = 𝑇 ⋅ 𝑃M  
 

 

𝑇(𝜃, 𝜙) =

(

 
 
1 0

cos(𝜙)

tan(𝜃)

0 1
sin(𝜙)

tan(𝜃)
0 0 0 )

 
 

 

(3.1) 

 

A point 𝑃M of the mask is transformed using the matrix 𝑇̅ so that it is projected onto the 

substrate level. This new point is referred to as 𝑃F here. It should be noted that such a 

simple calculation cannot take the thickness of the mask into account. In this calculation, 

it is assumed to be infinitesimally thin. Surface diffusion is also neglected. The result of 

such a calculation can be seen in Figure 3.16. This showed that the deposition rate at the 

tunnel contact can be reduced by up to 80% by the shadow cast. 
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Figure 3.16: Representation of a calculated deposition rate after substrate rotation. A value of 

1 means that there was no shading during substrate rotation, so there was no 

influence of the mask on the deposition rate. Accordingly, values less than 1 mean 

that the hard mask has shaded the area and reduced the deposition rate. The holes 

in the hard mask is shown as blue polygons and the TI nanoribbon as a red 

polygon. 

 

3.6 Stencil mask removal 

 

An important point in the fabrication process is the removal of the stencil lithography 

mask after the growth of the TI, it was metallized during the fabrication of the 

superconducting and normal conducting contacts. There are major reasons why we do not 

want to have a metallized mask on the samples when measuring it. Since a magnetic field 

is to be applied for later measurements, the superconductor on the mask must be removed 

to avoid shielding effects by the superconductor. The removal is also important to avoid 

short circuits of the contacts over this metal layer. Last but not least the fabrication of top 

gates is prevented by the presence of the mask. 

The challenge here is to remove the mask as completely as possible without damaging the 

tunnel junction. Different processes are suitable for this. Their advantages and 

disadvantages will be explained below. 
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3.6.1 Remove via wet etching 

 

Experiments were carried out to remove a hard mask by etching with 1% HF solution, as 

in the process step to under-etch the mask. The SiO2 layer under the mask is removed by 

the etching. So is the Si3N4 mask with the metals lift off if the etching time is sufficiently 

long. In order to protect the created structures, a selenium capping is applied before the 

etching. The selenium capping is highly resistant to HF etching and can thus protect the 

underlying structures. 

The test sample used is a grid mask on which Al (as dummy metal) was deposited which 

was then covered with the selenium capping. The selenium capping is deposited under 

rotation, so it is deposited below the mask without any shadows. 

The result after etching and evaporation of the selenium is shown in Figure 3.17(a). 

Unfortunately one can clearly see that the Al structures were strongly attacked. So it can 

be assumed that HF can penetrate the edges of the capping between the Si and the Se 

shown in Figure 3.17(b). In this way an unwanted etching of the Al takes place. In 

addition, large parts of the hard mask are left behind and have not completely detached. 

a) 

 
 

b) 

 
 
Figure 3.17: a) SEM image of a selenium-capped sample after wet etching with 1% HF 

solution for 3 min and evaporating the capping. b) Schematic representation of 

the cross-section of a part of the sample. The 1% HF solution can possibly 

penetrate at the edge of the Se capping between the Si and the Se (see arrow). 

 

4 μm 

Al 

Si 

Se 
HF penetrate 

the edges of 

the capping 
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3.6.2 Frame etching 

 

Experiments were carried out to remove parts of the hard mask by RIE etching. This 

requires a further EBL step to determine which areas of the hard mask should be etched. 

Since the etching is performed relatively close to relevant structures that should not be 

damaged, a very good alignment is required to ensure that only the desired areas are 

etched. 

Compared to polishing described in section 3.6.3, this is a clean process as no polishing 

paste is used and no other mechanical damage can occur. The disadvantage is that the 

sample is heated during RIE etching which can make it difficult to remove resist. 

A test sample was used which has the same layer stack as the tunnel junction. The result 

is shown in Figure 3.18 and can be seen as promising. The edges are well defined and the 

resist has protected the other areas well. The removal of the resist residues turned out to 

be unproblematic. 

 
 
Figure 3.18: SEM image of the sample after frame etching with RIE process.  

 

 

1 μm 
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3.6.3 Polishing 

 

Mechanical polishing of the hard mask with a polishing paste while resist protects the 

lower lying structures is a proven procedure [10] and is relatively reliable. It also prevents 

possible negative effects due to chemical influence on the tunnel junction due to the 

purely mechanical principle of action. 

Nevertheless, this also has its disadvantages. The nanostructures can be damaged during 

polishing by larger particles that come off the sample. An important disadvantage in 

relation to the production of the tunnel junction is that polishing the hard platinum layer 

has proven to be difficult. Thus, an overhang of Si3N4 remains at the edge of the mask, 

which makes the later fabrication of gates more difficult. 

Figure 3.19 shows a SEM image of a tunnel junction that has been polished with the 

procedure described above. The polishing procedure was also used for the sample 

measured in chapter 5. 

 
 
Figure 3.19: SEM image of a tunnel junction after polishing. On the edges of the mask 

protruding Si3N4 residues can be seen, which appear slightly transparent. In 

addition, some residues from the polishing compound can be seen. 

 

 

1 μm 
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4 Quantum transport modeling (with Kwant) 

 

Quantum transport simulations were performed to get a better understanding of the 

expected measurement results. Kwant is a Python package that makes it easy to define 

tight-binding models and calculate the quantum transport properties of nanostructures of 

any geometry. Thus the scattering matrix and with the help of this matrix the conductivity 

over a tunnel junction can be calculated. It was developed by Christoph W. Groth, 

Michael Wimmer, Anton R. Akhmerov and Xavier Waintal [69]. 

To create a tight-binding model that can be applied to various device shapes, an effective 

continuum model for the bulk electronic band structure near the Γ point is discretized on a 

grid. The resulting terms can be classified as onsite terms and hopping terms, yielding a 

graph consisting of sites and hoppings that connect them. The nodes and connections of 

this graph are then assigned to the terms obtained by the discretization procedure. Semi-

infinite leads can be connected to a discretized system under consideration and the 

scattering matrix, connecting all the input and output modes, can be calculated efficiently 

with Kwant. By specifying which of the leads is the input and output lead, Kwant can 

then use the scattering matrix to calculate the conductance. 

 

4.1 Model for the tunnel junction 

 

The model was inspired by the model presented in Ref. [70, 71] to model a tunnel 

contact. The main differences to the model presented here are the adaptation to the 

investigated experimental setup and the simulation of a 3D-TI with a real 3D model. The 

model consists of five parts in total. A central non-superconducting 3D-TI cuboid, which 

is connected from above with a tunnel contact. The tunnel contact consists of a metal lead 

which is connected to a metal monolayer of sites. This monolayer in turn couples to the 

TI cube and hopping between TI and metal is governed by a single tunneling parameter to 

represent the actual tunnel barrier in the simulations. The TI cube is connected to a lead 

of superconducting TI from the side. The system and connected leads are presented in 

Figure 4.1. 
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Figure 4.1: A Plot of the Kwant system, with each sphere shown representing a site of the 

tight-binding model. The monolayer of sites (gray) represents metal. The hopping 

terms from this metal to the TI (blue) in the z direction are adjusted with a tunnel 

parameter 𝑡. The lead connected to the metal from above represents also metal (the 

layers with red and light red color represent the infinite leads). The blue area 

consists of TI with 𝛥 =  0 to which a lead from TI with 𝛥 >  0 is connected. 

 

We consider the effective 4-band Hamiltonian for the Bi2Se3 material family. This 

Hamiltonian has been derived using 𝒌 ⋅ 𝒑  perturbation theory around the Γ-point and 

symmetry considerations in Ref. [28, 72]. The Hamiltonian is 

 

H(k) = ϵ(𝑘) +M(𝑘)𝑠𝑧 + 𝐴⊥𝑠𝑥(𝑘𝑥σ𝑥 + 𝑘𝑦σ𝑦) + 𝐴𝑧𝑘𝑧𝑠𝑥σ𝑧, 

 

ϵ(𝑘) = 𝐶0 − 𝐶⊥(𝑘𝑥
2 + 𝑘𝑦

2) − 𝐶𝑧𝑘𝑧
2, 

 

𝑀(𝑘) = 𝑀0 −𝑀⊥(𝑘𝑥
2 + 𝑘𝑦

2) − 𝑀𝑧𝑘𝑧
2 

(4.1) 

with 𝑧  as the stacking direction for the quintuple layers and the Pauli matrices 

𝒔 =  (𝑠𝑥, 𝑠𝑦, 𝑠𝑧) and 𝛔 = (σ𝑥, σ𝑦, σ𝑧), 𝒔 acting on the orbital and 𝛔 on the spin subspace. 

A Kronecker product is assumed between the Pauli matrices, which is not explicit in the 

notation. To take superconductivity into account, the conventional procedure is used to 

obtain a Bogoliubov-de Gennes (BdG) Hamiltonian 
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 ℋ =
1

2
∑ψ𝑘

†

𝑘

𝐻BdGψ𝑘, (4.2) 

 𝐻BdG(𝑘) = (
𝐻 − μTI  𝑖σ𝑦Δ

−𝑖σ𝑦Δ
∗ μTI − 𝐻

†) (4.3) 

This adds the superconducting order parameter Δ  to the Hamiltonian. A chemical 

potential μTI is also added. In the notation with Pauli matrices and Kronecker product, the 

Hamiltonian can be written as follows 

 
𝐻BdG(𝒌) = (ϵ(𝒌) − μ)τ𝑧𝑠0σ0 +𝑀(𝒌)τ𝑧𝑠𝑧σ0 + 𝐴⊥𝑠𝑥(𝑘𝑥τ0σ𝑥 + 𝑘𝑦τ𝑧σ𝑦)

+ 𝐴𝑧𝑘𝑧τ0𝑠𝑧σ𝑥 − Δτ𝑦𝑠0σ𝑦 
(4.4) 

with the Pauli matrices 𝝉 =  (𝜏𝑥, 𝜏𝑦, 𝜏𝑧)  acting on the particle-hole subspace. The 

Hermitian operator 𝐻BdG(𝑘) acts on the eight-component Nambu spinor 

 Ψ𝒌 = (𝑐𝒌↑𝐴 𝑐𝒌↑𝐵 𝑐𝒌↓𝐴 𝑐𝒌↓𝐵 𝑐−𝒌↑𝐴
† 𝑐−𝑘↑𝐵

† 𝑐−𝒌↓𝐴
† 𝑐−𝒌↓𝐵

† )
†
. (4.5) 

The basis ensures that the BdG Hamilton 𝐻BdG has the form shown in Equation (4.4).  

For the normal conducting lead of the model and a monolayer (gray in Figure 4.1) the 

following Hamiltonian 

 𝐻Metal(𝒌) = (
ℏ2

2𝑚𝑒
(𝑘𝑥

2 + 𝑘𝑦
2 + 𝑘𝑧

2) − μM)τ𝑧𝑠0σ0 (4.6) 

is used to model a metal, with the effective mass 𝑚𝑒, the chemical potential for the metal 

μM, and the reduced Planck constant ℏ. 

The hopping matrix for the tunnel barrier between the metal layer and TI has the form 

 𝐻hop-tunnel =
𝑡

2
𝜎0𝜏0( 𝐼2×2 + 𝑠𝑥) (4.7) 

where 𝐻hop-tunnel is diagonal in spin and particle-hole subspace, but randomly coupled to 

the different atomic orbitals. 
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4.1.1 Discretization of the Hamiltonian 

 

To maintain the onsite and hopping terms, the Hamiltonian must be discretized. The 

proceeding is analog to the procedure shown in Ref. [73]. For this, 𝒌 is replaced by −𝑖 ∇ 

in the Hamiltonian 

 
𝐻BdG = (ϵ − μ)τ𝑧𝑠0σ0 +𝑀τ𝑧𝑠𝑧σ0 + 𝑖𝐴⊥𝑠𝑥(∂𝑥τ0σ𝑥 + ∂𝑦τ𝑧σ𝑦)

+ 𝑖𝐴𝑧 ∂𝑧τ0𝑠𝑧σ𝑥 − Δτ𝑦𝑠0σ𝑦, 
(4.8) 

with ϵ = 𝐶0 − 𝐶⊥(∂𝑥
2 + ∂𝑦

2) − 𝐶𝑧 ∂𝑧
2, 𝑀 = 𝑀0 −𝑀⊥(∂𝑥

2 + ∂𝑦
2) − 𝑀𝑧 ∂𝑧

2. 

The Hamiltonian 𝐻BdG is discretized to a cubic lattice with the lattice constant 𝑎. The grid 

is indexed with integer (𝑥, 𝑦, 𝑧) = (𝑎𝑖, 𝑎𝑗, 𝑎𝑘) = 𝒓  grid coordinates. The differential 

operators can then be written with the help of creation and annihilation operators 𝑐𝒓
†, 𝑐𝒓 in 

position space. The first and second order derivatives then have the following form 

 

∂𝑥 =
1

𝑎
∑(𝑐𝒓

†𝑐𝒓+𝑎𝒙̂ − 𝑐𝒓
†𝑐𝒓)

𝑖,𝑗,𝑘

 

∂𝑥
2 =

1

𝑎2
∑(𝑐𝒓

†𝑐𝒓+𝑎𝒙̂ + 𝑐𝒓+𝑎𝒙̂
† 𝑐𝒓 − 2𝑐𝒓

†𝑐𝒓)

𝑖,𝑗,𝑘

. 
(4.9) 

 

Corresponding expressions are obtained for the other derivatives ∂𝑦, ∂𝑧, ∂𝑦
2 , ∂𝑧

2. With these 

differential operators, the Hamiltonian operator can now be converted into a form in, 

which the onsite and hopping terms required for the tight binding model appear explicitly. 

 𝐻 =∑𝒄𝒓
†

𝑖,𝑗,𝑘

𝐻onsite𝒄𝒓 +∑(𝒄𝒓
†𝐻hop,x𝒄𝒓+𝑎𝒙̂ + 𝒄𝒓

†𝐻hop,y𝒄𝒓+𝑎𝒚̂ + 𝒄𝒓
†𝐻hop,z𝒄𝒓+𝑎𝒛̂)

𝑖,𝑗,𝑘

 (4.10) 

𝒄𝒓
†, 𝒄𝒓  is now a vector of creation and annihilation operators, like Ψ𝒌  [10], with the 

difference that they act in the position space instead of in the momentum space. With the 

onsite and hopping matrices 
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𝐻hop,x =
1

2𝑎2
(𝐶⊥τ𝑧𝑠0σ0 +𝑀⊥τ𝑧𝑠𝑧σ0) +

𝑖𝐴⊥
2𝑎

𝑠𝑥τ0σ𝑥 

 

𝐻hop,y =
1

2𝑎2
(𝐶⊥τ𝑧𝑠0σ0 +𝑀⊥τ𝑧𝑠𝑧σ0) +

𝑖𝐴⊥
2𝑎

𝑠𝑥τ𝑧σ𝑦 

 

𝐻hop,z =
1

2𝑎2
(𝐶𝑧τ𝑧𝑠0σ0 +𝑀𝑧τ𝑧𝑠𝑧σ0) +

𝑖𝐴𝑧
2𝑎
𝑠0τ𝑧σ𝑥 

(4.11) 

these matrices can then easily be used to define a tight binding model with Kwant. 

 

4.1.2 Peierls substitution 

 

In section 2.1.1, the behavior under the influence of a magnetic field is described. To 

simulate the orbital effect, the Peierls substitution method [74] is applied to the hopping 

terms of the tight-binding model. The hopping terms are multiplied by a phase factor 

considered here as an example along the 𝑥-direction 

 𝐻Hop,x
′ = 𝐻Hop,x𝑒

𝑖ϕ𝑟
𝑥
 (4.12) 

with the phase factor 𝑒𝑖ϕ𝑟
𝑥
, and the hopping term is represented by 𝐻Hop,x as described in 

Ref. [73]. With the phase 

 ϕ𝑟
𝑥 =

𝑞

ℏ
∫ 𝑨𝑥(𝑥, 𝑎𝑗, 𝑎𝑘)d
𝑖+1

𝑖

𝑥 (4.13) 

the procedure is identical for the coordinates 𝑦, 𝑧. The charge 𝑞 is negative in case of 

holes. This is important when using a BdG Hamiltonian to take into account the correct 

charge for the hole block. The vector potential used is defined according to 𝑩 =  ∇ × 𝑨 

and must be chosen such that it results in the desired magnetic field 𝑩 in the simulations. 
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4.1.3 Transport simulations 

 

There are currently no values available for the material parameters of (Bi1-xSbx)2Te3 in 

Equation (4.11). Therefore, simple parameters from Ref. [75] are used to capture the 

essential features of a 3D-TI bulk and surface state spectrum. These are 𝐴⊥ = 3 eV∙Å, 

𝐴𝑧 = 3 eV∙Å,  𝑀0 = 0.3 eV,  𝑀⊥ = 15 eV∙Å
2,  𝑀𝑧 = 15 eV∙Å

2,  𝐶0 = 0 eV,  𝐶⊥ = 0 eV∙Å
2, 

𝐶𝑧 = 0 eV∙Å
2. 

The question arises for which chemical potential μTI  and magnetic field strength 𝐵𝑥  a 

MBS and therefore ZBP appears? To answer this question a phase diagram of the tunnel 

junction is simulated using the parameters μTI and 𝐵𝑥. To get a MBS we also have to open 

a superconducting gap. For this we set Δ = 0.2meV. For the chemical potential of the 

metal μM = 1 meV is chosen so that a conducting channel exists and 𝑡 =  15 meV for the 

tunnel barrier. This is the value of the hopping terms 𝑡 in Equation (4.7) and cannot be 

directly understood as barrier height. The plot of the phase diagram is shown in Figure 

4.2. The conductance is always evaluated at an energy of 𝐸 =  0 (ZBP at E = 0). 

From basic theoretical considerations, only a diamond structure with a conductivity of 

𝐺 = 0 and 𝐺 = 2𝑒2/ℎ would be expected. In the diamond-shaped areas with conductivity 

𝐺 = 2𝑒2/ℎ a MBS is present and all other areas have a conductivity of 𝐺 = 0. This 

structure results from the number of bands that intersect the Fermi level. Only for an odd 

number of band crossings a MBS exists. As the position of the Fermi level and the bands 

with μ and 𝐵𝑥 changes, the number of band crossings also changes. 

This diamond pattern is not exactly shown in Figure 4.2, which can probably be traced 

back to symmetry effects. For the simulated nanowire cross section, a discrete rotational 

symmetry exists that protects the spectrum from opening a superconducting gap ∆. This 

seems to occur predominantly when the induced gap ∆ has no winding phase around the 

circumference of the nanowire as described in Ref. [76]. This is different from the 

winding phase assumptions made in the work of Cook et al [29]. 

The details of this conductance pattern and deviations from the expected diamond pattern 

are still unclear and form an interesting topic for further investigation.  



4 Quantum transport modeling (with Kwant) 

 

 

50 

 

 
 
Figure 4.2: Phase diagram of the tunnel junction as a function of  𝜇TI and 𝐵𝑥. In the diamond-

shaped areas with a conductivity of 𝐺 = 2𝑒2/ℎ there is a ZBP and thus also a 

MBS. The red line shows the 𝜇TI value at which the simulation of Figure 4.3 was 

performed. 

 

For a simulation that is closer to the experimentally feasible, the chemical potential is 

now set to μTI = 10 meV. Instead of the chemical potential μTI , the energy 𝐸  is now 

varied to calculate the conductivity. This corresponds to a change of the bias voltage in 

the experiment. This simulation is shown as a color plot in Figure 4.3 and already shows a 

ZBP. In the Figure 4.4 a line cut through the ZBP is shown so that it is easy to see that the 

ZBP is quantized to 𝐺 = 2𝑒2/ℎ. 
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Figure 4.3: Simulation of the ZBP as a function of the magnetic field 𝐵𝑥. The red line shows the 

position of the line cut shown in Figure 4.4. 

 

 

 
 
Figure 4.4: Line cut of the simulation shown in Figure 4.3 at 𝐵𝑥 = 0.5𝛷0. The plot shows the 

ZBP quantized in height to 2𝑒2/ℎ. 
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5 Results and Discussion 

 

In the context of this thesis measurements were made on one of the manufactured 

devices. Special thanks to the University of Twente (UT) for providing the measurement 

time in their dilution refrigerator. The manufactured chip contains several junctions, so in 

a first step the quality of each junction was evaluated by means of SEM images. On the 

basis of these images it was then decided which of these junctions should be bonded. 

In previous attempts to bond the samples and take IV measurements at room temperature, 

it became clear that the junctions are highly sensitive to the introduction of static 

electricity. Even with very careful handling, all contacted junctions on a first chip were 

destroyed. In order to minimize such influences, no further attempts were made to record 

IV curves of the junctions at room temperature. After loading the chip into the dilution 

fridge and first test measurements it turned out that only one junction was intact it can be 

assumed that all other junctions on the chip were destroyed due to electrostatic discharge. 

To characterize the junction, the tunnel conductivity was investigated at different 

temperatures and magnetic field strengths. The magnetic field applied was aligned 

in-plane along the TI nanoribbon in all measurements.  

 

5.1 Geometry of the measured tunnel junction 

 

An SEM image of the junction measured in the dilution fridge is shown in Figure 5.1. In 

addition, Figure 5.1 shows the cross-section of the junction for the end. It consists 

essentially of four components, the TI grown in the trench, a superconductor Nb, a tunnel 

barrier of Al2O3 and a normally conducting contact Pt. The superconductor Nb does not 

cover the ends of the TI nanoribbon. Instead, they are covered by an insulator Al2O3 to 

which a normally conducting contact Pt is applied. There is no contact between 

superconductor and normal conductor. 

The whole structure is a tunnel contact which is used to determine the density of states 

locally under the tunnel barrier in TI by tunneling from the normal conductor via the 
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tunnel barrier into TI. In other words, the measured tunnel conductance d𝐼/d𝑉 is directly 

proportional to the local density of states as shown in section 2.4. 

 
 
Figure 5.1: SEM image of the junction measured in the dilution fridge. You can see the TI 

nanoribbon covered with Nb and the overlap between the normal conductor and 

the TI nanoribbon. The blurred areas of the image are caused by protruding 

remnants of the mask that were not completely removed during polishing (all 

lengths indicated in nm). 

 

 
 
Figure 5.2: Schematic representation of the cross section of the junction end, all lengths in nm 

(The distances in the horizontal direction are not drawn to scale.) 

 

Pt 

Nb 

Pt/TI 

Contact 
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5.2 Experimental setup 

 

The dilution refrigerator used has superconducting coils with which a magnetic field of 

−8 T to 8 T can be applied. The orientation of the magnetic field is in-plane along the 

nanoribbon in all measurements. The setup contains two different temperature sensors to 

measure different temperature ranges which will be referred to later with 𝑇5 and 𝑇8. The 

lowest temperature reached during the measurements was about 16 mK  (base 

temperature). The sample was glued into a chip carrier with conductive silver paint. The 

contact pads defined in the layout are then bonded to the contacts of the chip carrier. So 

that e.g. a junction with three contacts occupies a total of six pads on the chip carrier. This 

enables the comparison of the AC current signal with the AC voltage drop at the tunnel 

junction and is required for the quasi four-point measurement (one of the two normal 

conductor contacts of the sample with two bonds is not measured). 

The measurement carried out is intended to record the tunnel current from the normal 

conductor to the superconductor. According to the four-point measurement method, both 

metals were contacted twice (as described above). A bias DC current is sent via a normal 

conductor and a superconducting contact, to which an AC current is added with a lock-in 

amplifier. Parallel to this current, the corresponding DC voltage is measured at the other 

two contacts. This makes it possible that line and contact resistances up to the contact 

pads can be neglected. The actual differential conductance is determined by the lock-in 

amplification. Using an SMU (Source measure unit) operated as a voltmeter, the bias DC 

voltage drop at the junction is measured. The differential conductance can therefore be 

determined for different bias DC voltages and currents. A schematic diagram of this 

measurement setup is shown in Figure 5.3. 
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Figure 5.3: Schematic representation of the measurement setup in the MESA+ Institute for 

Nanotechnology at the University of Twente. 

 

5.3 Differential tunneling conductance 

 

In the wide range measurement shown in Figure 5.4 from -7.75 mV to 7.75 mV at 16 mK 

and without an applied magnetic field, the gap induced by the proximity effect is 

immediately visible. The coherence peaks of this gap are also visible. Thus, the width of 

the gap 2Δ can be estimated to be about 300 µeV to 400 µeV. 

Furthermore, no influence of the sweep direction of the bias current on the measured 

d𝐼/d𝑉 curves could be detected. This was verified for arbitrary magnetic fields as well as 

temperatures. 
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Figure 5.4: Wide-range measurement of the differential conductance over the bias voltage for 

the tunnel junction at a temperature of 16 mK. 

 

5.3.1 Magnetic field dependency 

 

Different measurements were carried out to investigate the behavior of the tunnel current 

under the influence of a magnetic field. The magnetic field used was applied in-plane 

parallel to the wire. At the beginning a measurement with low resolution and short 

integration time for the lock-in amplifier were performed to get a general overview. This 

measurement is shown in a color plot in Figure 5.5. 
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Figure 5.5: Plot of the magnetic field dependency of the tunneling conductance for different bias 

voltages. First measurements to get a general overview with a resolution for the 

magnetic field of 𝛥𝐵 = 0.01 T and a ramp rate of 0.1 μA/s. In the direction of the 

bias voltage, the measurement has a resolution of 401 measurement points.  

 

With this measurement the superconducting gap induced by the niobium is already 

visible. In addition, it can be seen that even with 8 T the critical magnetic field strength of 

the superconductor (Nb) was not reached. This was followed by three more field sweeps 

with a slower measurement speed to get a better resolution. Unfortunately a quench of the 

superconducting magnet in the cryostat occurred during a measurement due to the failure 

of the cooling water. Due to its rapid temperature change, this probably changed the 

behavior of the sample.  

In the measurements shown in Figure 5.6, an AC current of 1 nA was used for the lock-in 

amplifier. This measurement shows subgap features that become more and more visible 

with increasing magnetic field. Thus, the subgap features are easily recognizable, 

especially in the B = 6.4 T curves (red arrows in Figure 5.6). 
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Figure 5.6: Bias voltage sweeps at different magnetic field strengths for large magnetic fields 

(with red arrows on the subgap features). The offset added for the plot between the 

curves is 0.3 × 2𝑒2/ℎ. 

 

 
 
Figure 5.7: Bias voltage sweeps at different magnetic field strengths for small magnetic fields. The 

offset added for the plot between the curves is 0.2 × 2𝑒2/ℎ. A change in the gap 

shape from U-shaped to V-shaped can be clearly seen. 
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Figure 5.7 shows the plot of differential conductance measurements over the bias voltage 

for low magnetic fields. The measurement shows that the gap shape changes with the 

change of the magnetic field between a V-like shape and a rounded shape. It was also 

investigated how the differential conductance at zero bias voltage behaves depending on 

the magnetic field. These measurements are shown in Figure 5.8. At a magnetic flux 

density of 0.5 T  the nanotrench cross-section (415 nm × 20 nm ) is penetrated by a 

magnetic flux quantum Φ0 = ℎ/𝑒.  However, the oscillations in Figure 5.8 at 

𝑇8 =  0.031 K, have a much longer period length, so flux quantum periodicity cannot be 

observed. 

 
 
Figure 5.8: Magnetic field sweeps at different temperatures. The blue curve was measured with 

an AC current of 1 nA  compared to 10 nA  for the other curves for the lock-in 

amplifier. A peak can be seen around zero bias voltage, which may be caused by 

weak anti-localization. 

 

It can be seen that between 0.031 K and 2 K a peak is formed which is maybe due to 

weak anti-localization [77, 78]. In addition, an oscillation of the differential conductivity 

can be clearly detected via the applied magnetic field, especially at 31 mK. However, it is 

important to note that this curve was measured with an AC current for the lock-in 

amplifier of 1 nA compared to 10 nA for the other measurements. It can therefore be 
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assumed that the clarity of the oscillation here is not only due to the low temperature, but 

also to the AC voltage. 

 

5.3.1.1 Dependence of the subgap features on the magnetic field 

 

The second field sweep performed is depicted in Figure 5.9. Here some interesting 

features can be seen in the superconducting gap which increase especially from about 6 T. 

Furthermore a general symmetry of these features regarding positive and negative 

magnetic field can be seen. Because the tunneling conductance is proportional to the local 

density of states in the nanoribbon end it can be supposed that the features in the 

superconducting gap are subgap states. These are discussed again in section 5.4. 

Figure 5.10 shows line cuts from Figure 5.9, so that without magnetic field only one 

maybe two subgap features are visible. With an applied magnetic field of 8 T four subgap 

features are visible. The curves for 8 T and -8 T are almost identical so the peaks are also 

symmetrical with respect to the magnetic field.  

 

 
 
Figure 5.9: Plot of a magnetic field-dependent measurement with a resolution 𝛥𝐵 = 0.2 T and a 

ramp rate of 0.05 μA/s. In the direction of the bias voltage, the measurement has a 

resolution of 401 measurement points.  
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Figure 5.10: Comparison of measurement with positive, negative and without magnetic field. It 

should be noted that the curves for positive and negative magnetic fields are almost 

perfectly overlapping. 

 

In Figure 5.11 the same measurement data as in Figure 5.9 is shown as line cut. Each of 

the curves shown corresponds to an IV sweep at constant magnetic field. In order to be 

able to clearly display all of them in one plot, a fixed 0.1 × 2e2/h in relation to the 

previous curve is added to each of the curves. This makes it easier to recognize the 

development of individual features in the measured data compared to Figure 5.9. 

In Figure 5.11 it can be seen that a subgap feature forms as a visible peak at a certain 

magnetic field and then changes its energy when the magnetic field changes. 

Furthermore, the features seem to jump to higher energies when the magnetic field 

exceeds a certain limit. This statement has to be considered speculative because it is also 

possible that the state disappears and a new one becomes visible at higher energies. 
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Figure 5.11: Stack plot of line cuts of the measurement shown in Figure 5.9 from -8 T to 8 T. 

Each curve corresponds to a magnetic field sweep of the measurement. The offset 

between the curves is 0.1 × 2𝑒2/ℎ.  

 

 

-8 T 

8 T feature jump 
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To better understand the behavior of the peaks in relation to the magnetic field, the 

positions of the subgap features of Figure 5.11 are shown as points in the V-B plane in 

Figure 5.12. In addition, features that occurred outside the superconducting gap are also 

shown as points. Figure 5.12 also shows that the subgap features are symmetrical with 

respect to the magnetic field direction. Furthermore, the Figure 5.12 shows a widening of 

the subgap characteristics when the magnetic field strength is increased. 

 
 
Figure 5.12: Position of the subgap features in the V-B plane of the measurement in Figure 5.9. 

 

The measurement shown in Figure 5.13 provides a better resolution of the subgap states 

with respect to their magnetic field dependence. It is to see that a subgap feature moves 

slowly (in the order of 0.04 mV/T) with the amount of the magnetic field (probably 

continuously) to higher energies. Unfortunately the measurement field sweep resulted in 

the quench mentioned above. Due to the quench that interrupted the measurement, an 

accurate magnetic field resolution of the subgap states is only available for −8 T  to 

−6.6 T. 
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Figure 5.13: Position of the subgap features in the V-B plane of a magnetic field-dependent 

measurement with a better resolution 𝛥𝐵 =  0.05 T  as compared to the 

measurement in Figure 5.9 with 𝛥𝐵 = 0.2 T. The quench took place during this 

measurement.  

 

After this measurement a further field sweep was performed. However, it was found that 

the behavior of the sample changed due to the rapid temperature change caused by the 

quench. For example, the previously visible symmetries of the features are no longer 

present in the field sweep. Because of this, this measurement is not shown here. 

In summary, the measurements showed a soft gap around 𝐸 = 0  of approximately 

∆≈ 0.25 meV. Within this soft gap there are subgap peaks showing up as a function of 

bias voltage 𝑉 or, alternatively, energy 𝐸 = 𝑒𝑉 with a separation of ∆𝐸 ≈  0.1 meV with 

respect to their energy 𝐸. These subgap peaks have only a weak dependence of their 

energy 𝐸 on the magnetic field 𝐵. The subgap peaks become more pronounced for higher 

magnetic fields 𝐵 (𝐵 > 2 T).  
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5.3.2 Temperature behavior 

 

Different measurements are taken to investigate the temperature dependence of the tunnel 

junction. In the Figure 5.14 and Figure 5.15 the measurement of the differential tunneling 

conductance for different temperatures is plotted over the bias voltage. To improve 

clarity, a fixed offset of 0.3 × 2𝑒2/ℎ is added to each curve. In Figure 5.14 it can be seen 

that the superconducting gap opens below 2 K. In Figure 5.15, coherence peaks can also 

be recognized from approx. 0.5 K. 

The width of the opening gap fits well to calculations with the help of 

Δ0 = 1.76𝑘B𝑇c =  0.3 meV calculated with 𝑇𝑐 = 2 K. This equation 𝑇𝑐 = Δ0/1.76 𝑘𝐵  is 

derived from the BCS theory where the factor 1.76 is to be used for weak coupling [79]. 

 

 
 

Figure 5.14: Temperature dependency from 10 K to 2 K shown in a stack plot the offset between 

the curves is 0.3 × 2𝑒2/ℎ. 
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Figure 5.15: Temperature dependency from 1 K to 0.02 K shown in a stack plot. The offset 

between the curves is 0.3 × 2𝑒2/ℎ. 

 

The development of the differential conductance over temperature at zero bias voltage is 

shown in Figure 5.16. It can be seen that for the lowest temperature a minimum value of 

approx. 2.26 × 2𝑒2/ℎ  is reached which then asymptotically increases to approx. 

3 ×  2𝑒2/ℎ as the temperature rises. The values used for the plot are taken from the same 

measurement as those for Figure 5.14, Figure 5.15 and similar measurements at other 

temperatures. 
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Figure 5.16: Differential conductance versus temperature at zero bias voltage taken from the 

data shown in Figure 5.14 and Figure 5.15. 

 

5.3.2.1 Temperature dependence of the subgap features 

 

It was also investigated how the subgap features behave with respect to temperature. For 

this purpose single IV sweeps were performed at a constant magnetic field of B = 6.4 T at 

different temperatures, these measurements are shown in Figure 5.17. It can be seen that 

the peaks only become visible when the temperature falls below about T = 0.4 K. This is 

probably due to the temperature-related smearing of the signatures (the distance between 

the peaks becomes comparable to 𝑘𝐵𝑇 above 0.4 K). 
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Figure 5.17: Temperature dependency from 1 K to 0.027 K with a magnetic field of 6.4 T. Shown 

in a stack plot the offset between the curves is 0.2 × 2𝑒2/ℎ. 

 

5.4 Hypothesis for the observed subgap features 

 

In this section, I present a possible physical explanation for the subgap features visible in 

the measurements. A differential tunnel conductance d𝐼/d𝑉 from the normal conductor 

via an insulator into the TI nanoribbon was measured. The differential tunnel conductance 

d𝐼/d𝑉 should be proportional to the LDOS (local density of states) at the contact as 

shown in the section 2.4. Considering the junction geometry in Figure 5.2 it is not clear 

how far the proximity effect extends and influences LDOS below the barrier. By design 

of the tunnel junction, we are always probing LDOS below the normal contact. 

The simulations showed the ZBP of a MBS for a short junction in the ballistic regime. 

Unfortunately this could not be observed experimentally. Instead, there are subgap 

features for which a physical explanation is proposed in the following section. It is 

important to note that the measured junction has a width of 415 nm. However, the 

junction is much wider than in the simulations with a width of 10 nm. The short junction 

in the non-diffusive regime, the behavior shown in chapter 4 is therefore not to be 

expected. 
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If the TI of the tunnel junction is in the topological phase, only one state at or close zero 

energy is to be expected, namely exactly the MBS. Hybridization with the MBS at the 

opposite end of the wire can give rise to finite energy, but close to zero if the wire is long 

enough and the induced gap large enough. Unfortunately this was not observed here. 

However, with the geometry of the junction with a width of 414 nm it is not clear whether 

a clearly localized MBS can be formed at the end of the nanoribbon. It can be assumed 

that with such a large width no clearly localized MBS can be formed at the end of the 

nanoribbon. 

 

5.4.1 Andreev bound states 

 

A model of the Andreev bound states at the end of the proximitized nanowire (the 

calculations can also be applied to nanoribbons with a rectangular cross section [75]) was 

developed together with Kristof Moors. The model does not have the limitation of special 

limit case considerations regarding the junction geometry. 

The energy spectrum of a nonproximitized 3D nanoribbon with radius 𝑟  and Fermi 

energy 𝐸F (related to the Dirac point energy) is given by  

 
 

 
Figure 5.18: End of a proximitized nanowire with a nonproximitized region at the very end. 

Within the nonproximitized region, Andreev bound states are assumed. To model 

these Andreev bound states, the end of the nonproximitized region is thought of as 

being mirrored with respect to the nonproximitized region to obtain a Josephson 

junction. (Figures by courtesy of Kristof Moors)  
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 𝐸(𝑙, 𝑘) = ±ħ𝑣F(𝑘
2 +

(𝑙 +
1
2)

2

𝑟2
)

1
2

 (5.1) 

 

with 𝑙 = 0,±1, ±2,… the quantized angular momentum (different transverse modes). The 

energy spectrum is thus identical to the spectrum shown in equation (2.8) with 𝜂 = 0. We 

model the nanowire end as a Josephson junction without phase difference by mirroring 

the nonproximitized wire end. Within the nonproximitized region, Andreev bound states 

are assumed with specular reflection of the bound states at that wire end shown in Figure 

5.18. For the sake of simplicity, the gap ∆ assumes an abrupt (steplike) change from 

proximitized to nonproximitized, resulting in Δ(𝑧) = ΔΘ(𝑧 − 𝐿) where 0 ≤ 𝑧 ≤ 𝐿 applies 

to the nonproximitized region. In principle, the chemical potential for the proximitized 

and nonproximitized regions can vary greatly. However, to further simplify matters, we 

assume a constant chemical potential and perfect Andreev reflection. The energy 

spectrum results in the Andreev bound states  

 (𝑘𝑧,𝑒 − 𝑘𝑧,ℎ)2𝐿 = 2arccos (|
𝐸ABS
Δ
|) + 2πn (5.2) 

with 𝑛 = 0, ±1,±2,…  and the length 𝐿  of the nonproximitized nanowire region. The 

equation represents the respective accumulated phases. The right side of the equation 

contains the phase difference acquired through Andreev reflection and the left side 

contains the accumulated phase along the nonproximitized length. This phase depends on 

the wave vector of the holes and electrons. The energy shown in Equation (5.1) is 

dependent on the wave vector of the holes and electrons, so that the following equations  

 

𝑘𝑧,𝑒 = ±
√(𝜇 + 𝐸ABS)

2

(ħ𝑣F)
2

−
(𝑙 +

1
2)

2

𝑟2
 

𝑘𝑧,ℎ = ±
√(𝜇 − 𝐸ABS)

2

(ħ𝑣F)2
−
(𝑙 +

1
2)

2

𝑟2
 

(5.3) 

for holes and electrons result. This inserted in Equation (5.2) gives  
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(5.4) 

By solving this equation for E for different l and n the spectrum of the Andreev bound 

states can be obtained.  

To check if the peaks shown in the measurements are caused by such Andreev bound 

states, the spectrum is calculated for effective example values.  

For the analysis shown here, we assume 𝐸F = 0.1 eV, which is in line with estimates 

based on Hall bar and ARPES measurements [80, 81] and 𝑟 = 135.3 nm is used for the 

size. We evaluate the left- and right-hand sides of Equation (5.4) which is plotted in 

Figure 5.19(a-b) for a magnetic flux of Φ = 0 ×Φ0 and Φ = 0.5 × Φ0. For intersections 

of the dashed and non-dashed curves a solution of the equation exists and thus an 

Andreev bound state. The plots in Figure 5.19(c-d) show the momentum of the states over 

the number of subbands. Figure 5.19(e-f) shows the relative energy 𝐸ABS/Δ  of the 

Andreev bound states over the number of states.  

Figure 5.20(a-b) show a plot that is easier to compare to the measurements by plotting a 

peak at its energetic position through a Gaussian curve for each state. By summing up all 

these Gaussian curves, the plot is created.  

The model for Andreev bound states is promising but the plot shows a clear flux quantum 

periodicity of the energetic position of the states with respect to the magnetic flux. 

However, this strong dependence on the magnetic field could not be observed for the 

peaks in the subgap in the measurements. 

An alternative approach is to try to explain the observed peaks by a QD (quantum dot). 

This is tried in the following section. 
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a) 

 
 

b) 

 

c) 

 

d) 

 
e) 

 

f) 

 
 
Figure 5.19: a-b) The right and left side of Equation (5.4) are plotted so that a solution of the 

equation exists for intersections of the dashed and non-dashed curves and thus an 

Andreev-bound state. c- d) Momentum of the states over the number of subbands. 

e- f) The relative energy 𝐸𝐴𝐵𝑆/𝛥 of the Andreev bound states over the number of 

states (Figures by courtesy of Kristof Moors). 
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a) 

 
 

b) 

 

 
Figure 5.20: Plotting a peak at its energetic position through a Gaussian curve for each state. 

By summing up all these Gaussian curves, the plot is created (Figures by courtesy 

of Kristof Moors). 

 

5.4.2 Quantum dot and Coulomb blockade 

 

Rather than considering Andreev bound states or MBS, an alternative explanation that is 

consistent with the observed subgap features are charge effects of a QD. If the tunnel 

contact is considered as a barrier to a QD, the capacity of the tunnel barrier results in a 

charge energy in the range of 0.1 meV, which is approximately the distance of the subgap 

features. The exact calculation is shown below 

 

Δ𝐸QD =
𝑒2

𝐶
=

𝑒2

1.433 × 10−15 F
= 0.11 meV 

 

𝐶 = ε0εr ⋅
𝐴

𝑑
= ε0 ⋅ 9 ⋅

130 nm ⋅ 415 nm

3 nm
= 1.433 × 10−15 F. 

(5.5) 

The energy levels of the QD have an equidistant distance of Δ𝐸  with the electron 

charge 𝑒. The capacitance of the QD is 𝐶 and results from the above calculation since a 

parallel plate capacitor is assumed for the barrier. The capacitance is proportional to the 

area of the contact covering the wire end and is inversely proportional to the thickness of 

the barrier. 

If a QD is assumed to exist, the subgap features are caused by charging effects of single 

electrons on this QD. For such a single electron charge a weak coupling of source and 
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drain to the QD is required. This can be considered as present with the tunnel barrier and 

the TI proximitized-TI interface as barrier. 

In the case of the TI-S interface, if the whole ribbon is considered to be the QD, charge 

parity effects should show up, an effect that is due to the fact that Cooper pairs have a 

charge of 2𝑒. This results in different charge energies for an even or odd number of 

electrons on the QD. However, this cannot be observed and can therefore be excluded. 

Consequently, it can be assumed that the QD consists of the nonproximitized ribbon 

region. From early experiments (see Refs. [82, 83], for examples) it is known that bulk 

contribution is dominant in normal (magneto)transport measurements. So it cannot be 

excluded that the QD extends into the (nonproximitized) bulk. Now as a condition for the 

occurrence of Coulomb blockade it has to be checked if the energy of the QD is 

dominated by the charging energy. This can be checked by calculating the energy 

distance that can be expected for a normal electron gas at Fermi Energy 𝐸𝐹 

 ρ(𝐸𝐹) =
(2𝑚∗)

3
2

2π2ℏ3√𝐸𝐹
, (5.6) 

 Δ𝐸EG =
1

ρ(𝐸𝐹)𝑉
. (5.7) 

If 𝐸𝐹 = 0.056 eV  and 𝑚∗ = 0.58𝑚e  [80] is assumed, an energy distance of 

Δ𝐸EG =  7.357 ×  10−4 meV results. 

The energy distances are four orders of magnitude smaller than those of the QD. The 

condition is therefore fulfilled and a QD formed by the nonproximitized bulk region can 

be considered as a possible explanation for the subgap features shown. 

Even though the QD interpretation is very promising and in good agreement with the 

observed subgap peaks and their properties like Δ𝐸QD = 0.11 meV  and low magnetic 

field dependence, some questions remain. What is the barrier on the superconductor 

contact side? To realize a Coulomb blockade regime, the QD must be sufficiently isolated 

from all the leads. It can be argued that the TI-STI interface forms another barrier. 

Furthermore, due to the geometry and the resulting steep angle of incidence, Andreev 

reflections are less likely to occur at this interface. However, this only applies to states 
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with high transverse velocity that show up in the middle of the gap. Nevertheless, this 

could cause further electrical isolation. 
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6 Conclusion & Outlook 

 

In summary, it has been successfully demonstrated that the fabrication of complex 

nanostructures such as a tunnel junction consisting of up to four different materials is 

possible in situ using stencil lithography. By precisely optimizing the layout geometry for 

the stencil lithography mask, it was possible to ensure that the normal conducting contacts 

were precisely aligned with the 3D-TI nanoribbon without losing the integrity of the 

mask. Python scripts were used to create a large number of test structures with different 

geometries on one sample. A simple model for estimating the influence of the stencil 

lithography mask shadow on the rotation deposition was developed.  

The general behavior of the tunnel junction could be determined. The measurements 

showed the opening of a soft gap with a gap width 2Δ of about 300 μeV to 400 μeV. This 

gap starts to open at about 2 K and becomes deeper and more V-shaped as the 

temperature decreases. Thus, it can be assumed that the TI was successfully proximitized 

by the Nb and that the density of states at the contact point was measured through a 

tunnel barrier. The results can be considered as a proof of concept, as they confirm the 

general feasibility of the concept of an in situ tunnel junction.  

Our first results did not show the expected ZBP for a MBS at the nanoribbon end and our 

analysis shows that the structure needs further optimization (see outlook below). Instead 

of a ZBP in the middle of the gap, I identified a robust and equidistant subgap peak 

spectrum. These peaks indicate the presence of a charge energy dominated QD at the 

3D-TI nanoribbon end. Andreev bound states have also been discussed as possible 

explanations for the measurement results. However, they show an unobserved strong 

magnetic field dependence in the model. The shown hypotheses are therefore promising 

and can give hints for future investigations. 

Additionally, a model for the numerical simulation of the quantum transport behavior of 

such proximitized 3D-TI tunnel junctions has been developed. In these simulations a ZBP 

quantized in height at 2𝑒2/ℎ could be successfully shown. 
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Outlook 

For future work on the tunnel junction shown in this thesis, many questions remain open. 

The quality and thickness of the tunnel barrier used here are still rather unclear. In order 

to optimize these questions, transmission electron microscopy (TEM) investigations of 

the tunnel barrier and the individual interfaces would be very interesting. This could 

provide information about the exact thickness and quality of the barrier. 

Measurements of tunneling junctions with different widths and lengths would also be 

very helpful to better interpret the data. Since the primary goal is the detection of MBS, 

the focus for future junction detection should be on reducing the junction width. This 

would reduce the influence of any QD and reduce the number of possible modes. A better 

localization of the MBS is also expected. With regard to the QD, reducing the normal 

contact width (not to be confused with the TI nanoribbon width) at the barrier would be 

sufficient to increase the QD charging energy. 

Exact information about which widths are promising is difficult to give for 3D-TIs. Here 

further simulations could provide helpful information. As a guideline it would be useful 

to simulate or measure the widths (approx. 100 nm) of the semiconductor nanowires in 

which MBSs have already been shown [7, 11-15]. 

A significant step forward would be the possibility to use gates. The fabrication of these 

gates is currently prevented by the substrate used in the case of a back gate and by the 

mask in the case of top gates. Thus, a back gate could be used to influence the chemical 

potential, offering new possibilities to characterize the tunnel junction. Side gates at the 

contacts could also be used to study the influence of a possible QD.  Such a tunnel contact 

with side gate could look like the one shown in Figure 6.1. 

 
 
Figure 6.1: Schematic diagram of a top view of a tunnel contact with side gate to influence the 

energy levels of a QD which may be present at the contact. 

Nb 
Pt TI 

Pt side gate 



 

 

78 

 

7 Acknowledgments 

 

Many great people have supported and helped me for this thesis. In this section I would 

like to thank them. 

I would like to thank Prof. Dr. Detlev Grützmacher who gave me the opportunity to work 

on such an exciting topic as TIs at the Peter Grünberg Institute (PGI-9). 

I would like to thank Prof. Dr. Markus Morgenstern for taking up the role of the second 

examiner of this master thesis. 

A big thank you goes to my supervisor Tobias Schmitt for his patient guidance; his 

extensive knowledge about the production of nanostructures was very helpful. I also went 

with Tobias to Twente for a measurement stay, his tireless support during the 

measurements made the interesting results possible. 

Special thanks go to Dr. Peter Schüffelgen for his open and patient management style, 

which always ensured a good working atmosphere in the group. His enthusiasm and 

optimism was always contagious and a great source of motivation. His guidance has 

helped me develop further during my time at Jülich, both personally and in relation to 

science. 

A big thank you goes to Dr. Kristof Moors for his theoretical support. Only the detailed 

discussions with him made it possible to understand the measurement data.  His support 

in the development of the Kwant model was very helpful. I also want to thank him for the 

meticulous correction instructions he gave me for this thesis. Through them I learned a lot 

about how scientific texts should be written. 

I would like to thank Michael Schleenvoigt who did the growth of TIs and the deposition 

of metals together with Max Vaßen-Carl. Here I would also like to thank Benjamin 

Bennemann for his support during the deposition in the Nano-cluster. 

Special thanks to Prof. Dr. Alexander Brinkman of MESA+ Institute of Nanotechnology 

at the University of Twente for providing the measurement time in their dilution 

refrigerator. In this context I would also like to thank Prof. Dr. Chuan Li and Daan 

Wielens for their help in carrying out these measurements. 



7 Acknowledgments 

 

79 

 

 

I would like to thank Dr. Elmar Neumann and Stephany Bunteand for their introduction 

to SEM imaging. They always had helpful advice available to get good images. 

I would like to thank Dr. Florian Lentz for his support in electron beam lithography and 

his patience in discussing my layouts where he always brought in his deep knowledge. 

Thanks to the whole HNF team for their introduction to cleanroom processes. They were 

always able to help with questions about the various processes. 

I would like to thank Jonas Kölzer for providing an important resource for good research, 

namely good coffee. I thank Anton Faustmann for providing his inexhaustible supply of 

sweets. 

Last but not least, I would like to thank my family without their help I would never have 

come this far. 

 



 

 

80 

 

8 Bibliography 

 

1. Feynman, R.P., Simulating physics with computers. International Journal of 
Theoretical Physics, 1982. 21(6): p. 467-488 DOI: 10.1007/BF02650179. 

2. Shor, P.W., Scheme for reducing decoherence in quantum computer memory. 
Physical Review A, 1995. 52(4): p. R2493-R2496 DOI: 
10.1103/PhysRevA.52.R2493. 

3. Hasan, M.Z. and C.L. Kane, Colloquium: Topological insulators. Rev. Mod. Phys., 
2010. 82(4): p. 3045-3067 DOI: 10.1103/RevModPhys.82.3045. 

4. Hyart, T., et al., Flux-controlled quantum computation with Majorana fermions. 
Phys. Rev. B, 2013. 88(3): p. 035121 DOI: 10.1103/PhysRevB.88.035121. 

5. Alicea, J., et al., Non-Abelian statistics and topological quantum information 
processing in 1D wire networks. Nature Physics, 2011. 7(5): p. 412-417 DOI: 
10.1038/nphys1915. 

6. Majorana, E. and L. Maiani, A symmetric theory of electrons and positrons, in 
Ettore Majorana Scientific Papers: On occasion of the centenary of his birth, G.F. 
Bassani, Editor. 2006, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 201-233. 

7. Mourik, V., et al., Signatures of Majorana Fermions in Hybrid Superconductor-
Semiconductor Nanowire Devices. Science, 2012. 336(6084): p. 1003-1007 DOI: 
10.1126/science.1222360. 

8. Sun, H.-H. and J.-F. Jia, Detection of Majorana zero mode in the vortex. npj 
Quantum Materials, 2017. 2(1): p. 34 DOI: 10.1038/s41535-017-0037-4. 

9. Nichele, F., et al., Scaling of Majorana Zero-Bias Conductance Peaks. Physical 
Review Letters, 2017. 119(13): p. 136803 DOI: 10.1103/PhysRevLett.119.136803. 

10. Schüffelgen, P., et al., Selective area growth and stencil lithography for in situ 
fabricated quantum devices. Nature Nanotechnology, 2019. 14(9): p. 825-831 
DOI: 10.1038/s41565-019-0506-y. 

11. Chen, J., et al., Ubiquitous Non-Majorana Zero-Bias Conductance Peaks in 
Nanowire Devices. Physical Review Letters, 2019. 123(10): p. 107703 DOI: 
10.1103/PhysRevLett.123.107703. 

12. Deng, M.T., et al., Majorana bound state in a coupled quantum-dot hybrid-
nanowire system. Science, 2016. 354: p. 1557-1562. 

13. Grivnin, A., et al., Concomitant opening of a bulk-gap with an emerging possible 
Majorana zero mode. Nature Communications, 2019. 10(1): p. 1940 DOI: 
10.1038/s41467-019-09771-0. 



 

 

81 

 

14. Gül, Ö., et al., Ballistic Majorana nanowire devices. Nature Nanotechnology, 
2018. 13(3): p. 192-197 DOI: 10.1038/s41565-017-0032-8. 

15. Das, A., et al., Zero-bias peaks and splitting in an Al–InAs nanowire topological 
superconductor as a signature of Majorana fermions. Nature Physics, 2012. 
8(12): p. 887-895 DOI: 10.1038/nphys2479. 

16. Liu, C.-X., et al., Andreev bound states versus Majorana bound states in quantum 
dot-nanowire-superconductor hybrid structures: Trivial versus topological zero-
bias conductance peaks. Physical Review B, 2017. 96(7): p. 075161 DOI: 
10.1103/PhysRevB.96.075161. 

17. Pan, H. and S. Das Sarma, Physical mechanisms for zero-bias conductance peaks 
in Majorana nanowires. Physical Review Research, 2020. 2(1): p. 013377 DOI: 
10.1103/PhysRevResearch.2.013377. 

18. Ngabonziza, P., et al., In situ spectroscopy of intrinsic Bi2Te3 topological insulator 
thin films and impact of extrinsic defects. Phys. Rev. B, 2015. 92(3): p. 035405 
DOI: 10.1103/PhysRevB.92.035405. 

19. Thomas, C.R., et al., Surface Oxidation of Bi2(Te,Se)3 Topological Insulators 
Depends on Cleavage Accuracy. Chemistry of Materials, 2016. 28(1): p. 35-39 
DOI: 10.1021/acs.chemmater.5b03923. 

20. Kane, C.L. and E.J. Mele, Z2 Topological Order and the Quantum Spin Hall Effect. 
Physical Review Letters, 2005. 95(14): p. 146802 DOI: 
10.1103/PhysRevLett.95.146802. 

21. Kane, C.L. and E.J. Mele, Quantum Spin Hall Effect in Graphene. Physical Review 
Letters, 2005. 95(22): p. 226801 DOI: 10.1103/PhysRevLett.95.226801. 

22. Thouless, D.J., et al., Quantized Hall Conductance in a Two-Dimensional Periodic 
Potential. Physical Review Letters, 1982. 49(6): p. 405-408 DOI: 
10.1103/PhysRevLett.49.405. 

23. Fu, L., C.L. Kane, and E.J. Mele, Topological Insulators in Three Dimensions. 
Physical Review Letters, 2007. 98(10): p. 106803 DOI: 
10.1103/PhysRevLett.98.106803. 

24. Moore, J.E. and L. Balents, Topological invariants of time-reversal-invariant band 
structures. Physical Review B, 2007. 75(12): p. 121306 DOI: 
10.1103/PhysRevB.75.121306. 

25. Roy, R., Topological phases and the quantum spin Hall effect in three dimensions. 
Physical Review B, 2009. 79(19): p. 195322 DOI: 10.1103/PhysRevB.79.195322. 

26. Schäpers, T., Semiconductor Spintronics. 2016, Berlin, Boston: De Gruyter. 



 

 

82 

 

27. Bansil, A., H. Lin, and T. Das, Colloquium: Topological band theory. Reviews of 
Modern Physics, 2016. 88(2): p. 021004 DOI: 10.1103/RevModPhys.88.021004. 

28. Zhang, H., et al., Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single 
Dirac cone on the surface. Nature Physics, 2009. 5(6): p. 438-442 DOI: 
10.1038/nphys1270. 

29. Cook, A. and M. Franz, Majorana fermions in a topological-insulator nanowire 
proximity-coupled to an s-wave superconductor. Phys. Rev. B, 2011. 84(20): p. 
201105 DOI: 10.1103/PhysRevB.84.201105. 

30. Cook, A.M., M.M. Vazifeh, and M. Franz, Stability of Majorana fermions in 
proximity-coupled topological insulator nanowires. Phys. Rev. B, 2012. 86(15): p. 
155431 DOI: 10.1103/PhysRevB.86.155431. 

31. Cook, A. and M. Franz. Majorana Fermions in Proximity-coupled Topological 
Insulator Nanowires. 2011. 

32. Schüffelgen, P., Exploiting topological insulators for Majorana devices and physics 
via molecular beam epitaxy. 2018. 

33. Veldhorst, M., et al., Josephson supercurrent through a topological insulator 
surface state. Nature Materials, 2012. 11(5): p. 417-421 DOI: 10.1038/nmat3255. 

34. Zhang, J., et al., Band structure engineering in (Bi1−xSbx)2Te3 ternary topological 
insulators. Nature Communications, 2011. 2(1): p. 574 DOI: 
10.1038/ncomms1588. 

35. Kong, D., et al., Ambipolar field effect in the ternary topological insulator (BixSb1–
x)2Te3 by composition tuning. Nature Nanotechnology, 2011. 6(11): p. 705-709 
DOI: 10.1038/nnano.2011.172. 

36. Li, H.D., et al., Growth of multilayers of Bi2Se3/ZnSe: Heteroepitaxial interface 
formation and strain. Applied Physics Letters, 2011. 98(4): p. 043104 DOI: 
10.1063/1.3548865. 

37. Alpichshev, Z., et al., STM Imaging of Electronic Waves on the Surface of Bi2Te3: 
Topologically Protected Surface States and Hexagonal Warping Effects. Physical 
Review Letters, 2010. 104(1): p. 016401 DOI: 10.1103/PhysRevLett.104.016401. 

38. Wang, G., et al., Atomically smooth ultrathin films of topological insulator 
Sb2Te3. Nano Research, 2010. 3(12): p. 874-880 DOI: 10.1007/s12274-010-0060-
2. 

39. Hsieh, D., et al., Observation of Time-Reversal-Protected Single-Dirac-Cone 
Topological-Insulator States in Bi2Te3 and Sb2Te3. Physical Review Letters, 2009. 
103(14): p. 146401 DOI: 10.1103/PhysRevLett.103.146401. 



 

 

83 

 

40. Weyrich, C., et al., Growth, characterization, and transport properties of ternary 
(Bi1−xSbx)2Te3topological insulator layers. Journal of Physics: Condensed 
Matter, 2016. 28(49): p. 495501 DOI: 10.1088/0953-8984/28/49/495501. 

41. Onnes, H.K., Further Experiments with Liquid Helium. D. On the Change of the 
Electrical Resistance of Pure Metals at very low Temperatures, etc. V. The 
Disappearance of the resistance of mercury. Through Measurement to 
Knowledge, 1991: p. 264-266 DOI: 10.1007/978-94-009-2079-8_16. 

42. van Delft, D. and P. Kes, The discovery of superconductivity. Physics Today, 2010. 
63(9): p. 38-43 DOI: 10.1063/1.3490499. 

43. Lévy, L.-P., Ginzburg-Landau Theory. Magnetism and Superconductivity, 2000: p. 
285-307 DOI: 10.1007/978-3-662-04271-7_13. 

44. Bardeen, J., L.N. Cooper, and J.R. Schrieffer, Theory of Superconductivity. Physical 
Review, 1957. 108(5): p. 1175-1204 DOI: 10.1103/PhysRev.108.1175. 

45. Meissner, W. and R. Ochsenfeld, Ein neuer Effekt bei Eintritt der 
Supraleitfähigkeit. Naturwissenschaften, 1933. 21: p. 787-788 DOI: 
10.1007/BF01504252. 

46. Tinkham, M., Introduction to Superconductivity. Dover Books on Physics Series. 
2004: Dover Publications. 

47. Deaver, B.S. and W.M. Fairbank, Experimental Evidence for Quantized Flux in 
Superconducting Cylinders. Physical Review Letters, 1961. 7(2): p. 43-46 DOI: 
10.1103/PhysRevLett.7.43. 

48. Bardeen, J., L.N. Cooper, and J.R. Schrieffer, Microscopic Theory of 
Superconductivity. Physical Review, 1957. 106(1): p. 162-164 DOI: 
10.1103/PhysRev.106.162. 

49. Cooper, L.N., Bound Electron Pairs in a Degenerate Fermi Gas. Physical Review, 
1956. 104(4): p. 1189-1190 DOI: 10.1103/PhysRev.104.1189. 

50. Sato, M. and Y. Ando, Topological superconductors: a review. Reports on 
Progress in Physics, 2017. 80(7): p. 076501 DOI: 10.1088/1361-6633/aa6ac7. 

51. Schäpers, T., Superconductor/Semiconductor Junctions. Vol. 174. 2001. 

52. McMillan, W.L., Theory of Superconductor---Normal-Metal Interfaces. Physical 
Review, 1968. 175(2): p. 559-568 DOI: 10.1103/PhysRev.175.559. 

53. Buckel, W. and R. Kleiner, Supraleitung: Grundlagen und Anwendungen. 2013: 
Wiley. 

54. Courtois, H., et al., Long-range coherence and mesoscopic transport in N–S 
metallic structures. Superlattices and Microstructures, 1999. 25(5): p. 721-732 
DOI: 10.1006/spmi.1999.0711. 



 

 

84 

 

55. Kitaev, A.Y., Unpaired Majorana fermions in quantum wires. Physics-Uspekhi, 
2001. 44(10S): p. 131-136 DOI: 10.1070/1063-7869/44/10s/s29. 

56. Qi, X.-L. and S.-C. Zhang, Topological insulators and superconductors. Rev. Mod. 
Phys., 2011. 83(4): p. 1057-1110 DOI: 10.1103/RevModPhys.83.1057. 

57. Majorana, E., Teoria simmetrica dell'elettrone e del positrone. Il Nuovo Cimento 
(1924-1942), 2008. 14(4): p. 171 DOI: 10.1007/BF02961314. 

58. Alicea, J., New directions in the pursuit of Majorana fermions in solid state 
systems. Reports on Progress in Physics, 2012. 75(7): p. 076501 DOI: 
10.1088/0034-4885/75/7/076501. 

59. André Melo, C.-X.L., Piotr Rożek, Tómas Örn Rosdahl, Michael Wimmer, 
Conductance asymmetries in mesoscopic superconducting devices due to finite 
bias. 

60. Franz, M., Majorana's wires. Nature Nanotechnology, 2013. 8(3): p. 149-152 DOI: 
10.1038/nnano.2013.33. 

61. Benia, H.M., et al., Reactive Chemical Doping of the Bi2Se3 Topological Insulator. 
Phys. Rev. Lett., 2011. 107(17): p. 177602 DOI: 10.1103/PhysRevLett.107.177602. 

62. Lang, M., et al., Revelation of Topological Surface States in Bi2Se3 Thin Films by In 
Situ Al Passivation. ACS Nano, 2012. 6(1): p. 295-302 DOI: 10.1021/nn204239d. 

63. Ngabonziza, P., et al., Gate-Tunable Transport Properties of In Situ Capped Bi2Te3 
Topological Insulator Thin Films. Advanced Electronic Materials, 2016. 2(8): p. 
1600157 DOI: 10.1002/aelm.201600157. 

64. Rosenbach, D., Induced superconductivity in molecular beam epitaxy grown 
topologicalinsulator thin films, Master’s thesis, University of Twente. 2016. 

65. Schmitt, T., Low-dimensional Josephson junctions based on molecular beam 
epitaxy grown topological insulator thin fims, Master’s thesis, RWTH Aachen. 
2017. 

66. Kampmeier, J., et al., Selective area growth of Bi2Te3 and Sb2Te3 topological 
insulator thin films. Journal of Crystal Growth, 2016. 443: p. 38-42 DOI: 
10.1016/j.jcrysgro.2016.03.012. 

67. Weyrich, C., et al., Phase-coherent transport in selectively grown topological 
insulator nanodots. Nanotechnology, 2018. 30(5): p. 055201 DOI: 10.1088/1361-
6528/aaee5f. 

68. Matthias, K., KLayout. 

69. Groth, C.W., et al., Kwant: a software package for quantum transport. New 
Journal of Physics, 2014. 16(6): p. 063065 DOI: 10.1088/1367-2630/16/6/063065. 



 

 

85 

 

70. Díez Mérida, J., Tunneling Spectroscopyona Phase Tunable Topological Josephson 
Junction. 

71. Ren, H., et al., Topological superconductivity in a phase-controlled Josephson 
junction. Nature, 2019. 569(7754): p. 93-98 DOI: 10.1038/s41586-019-1148-9. 

72. Liu, C.-X., et al., Model Hamiltonian for topological insulators. Phys. Rev. B, 2010. 
82(4): p. 045122 DOI: 10.1103/PhysRevB.82.045122. 

73. Nijholt, B., Towards realistic numerical simulations of Majorana devices. 
2020(2020-11) DOI: 10.4233/uuid:6cdf1184-ce38-412d-a3a5-1a793c787e58. 

74. Peierls, R., Zur Theorie des Diamagnetismus von Leitungselektronen. Zeitschrift 
für Physik, 1933. 80(11): p. 763-791 DOI: 10.1007/BF01342591. 

75. Moors, K., et al., Magnetotransport signatures of three-dimensional topological 
insulator nanostructures. Physical Review B, 2018. 97(24): p. 245429 DOI: 
10.1103/PhysRevB.97.245429. 

76. de Juan, F., J.H. Bardarson, and R. Ilan, Conditions for fully gapped topological 
superconductivity in topological insulator nanowires. SciPost Physics, 2019. 6(5): 
p. 060 DOI: 10.21468/SciPostPhys.6.5.060. 

77. Weyrich, C., et al., Growth, characterization, and transport properties of ternary 
(Bi1-xSbx)2Te3 topological insulator layers. Journal of Physics: Condensed 
Matter, 2016. 28(49): p. 495501 DOI: 10.1088/0953-8984/28/49/495501. 

78. Kölzer, J., et al., Phase-coherent loops in selectively-grown topological insulator 
nanoribbons. Nanotechnology, 2020. 31(32): p. 325001 DOI: 10.1088/1361-
6528/ab898a. 

79. Narlikar, A.V., Superconductors. 2014: OUP Oxford. 

80. Eschbach, M., Band structure engineering in 3D topological insulators 
investigated by angle-resolved photoemission spectroscopy. 2016, 
Forschungszentrum Jülich GmbH, Zentralbibliothek: Jülich. 

81. Rosenbach, D., et al., Quantum Transport in Topological Surface States of 
Selectively Grown Bi2Te3 Nanoribbons. Advanced Electronic Materials, 2020. 
6(8): p. 2000205 DOI: 10.1002/aelm.202000205. 

82. Peng, H., et al., Aharonov–Bohm interference in topological insulator 
nanoribbons. Nature Materials, 2010. 9(3): p. 225-229 DOI: 10.1038/nmat2609. 

83. Qu, D.-X., et al., Quantum Oscillations and Hall Anomaly of Surface States in the 
Topological Insulator Bi2Te3. Science, 2010. 329(5993): p. 821 DOI: 
10.1126/science.1189792. 

 


	1 Introduction
	2 Theory
	2.1 Topological insulators
	2.1.1 Topological insulator nanostructures under the influence of a magnetic field
	2.1.2 3D topological insulator materials

	2.2 Introduction to superconductivity
	2.2.1 Microscopic description and Bogoliubov-de Gennes Hamiltonian
	2.2.2 Andreev reflection
	2.2.3 Proximity effect

	2.3 Majorana bound states
	2.4 Tunneling spectroscopy

	3 Fabrication process
	3.1 Surface degradation
	3.2 Fabrication of a selective area epitaxy mask and a mask for stencil lithography
	3.2.1 Substrate fabrication
	3.2.2 Electron-beam lithography and reactive-ion etching

	3.3 Ultra-high vacuum lithography
	3.3.1 Selective area epitaxy of the topological insulator
	3.3.2 Manufacturing of metal contacts and tunnel barrier via stencil lithography

	3.4 Stencil mask optimization
	3.5 Estimation of the tunnel barrier thickness
	3.6 Stencil mask removal
	3.6.1 Remove via wet etching
	3.6.2 Frame etching
	3.6.3 Polishing


	4 Quantum transport modeling (with Kwant)
	4.1 Model for the tunnel junction
	4.1.1 Discretization of the Hamiltonian
	4.1.2 Peierls substitution
	4.1.3 Transport simulations


	5 Results and Discussion
	5.1 Geometry of the measured tunnel junction
	5.2 Experimental setup
	5.3 Differential tunneling conductance
	5.3.1 Magnetic field dependency
	5.3.1.1 Dependence of the subgap features on the magnetic field

	5.3.2 Temperature behavior
	5.3.2.1 Temperature dependence of the subgap features


	5.4 Hypothesis for the observed subgap features
	5.4.1 Andreev bound states
	5.4.2 Quantum dot and Coulomb blockade


	6 Conclusion & Outlook
	7 Acknowledgments
	8 Bibliography

