000885633 001__ 885633
000885633 005__ 20230310131340.0
000885633 0247_ $$2doi$$a10.1007/s00791-020-00330-5
000885633 0247_ $$2ISSN$$a1432-9360
000885633 0247_ $$2ISSN$$a1433-0369
000885633 0247_ $$2Handle$$a2128/25908
000885633 0247_ $$2WOS$$aWOS:000572641700001
000885633 037__ $$aFZJ-2020-03974
000885633 082__ $$a610
000885633 1001_ $$0P:(DE-Juel1)169281$$aSchöbel, Ruth$$b0$$eCorresponding author$$ufzj
000885633 245__ $$aPFASST-ER: combining the parallel full approximation scheme in space and time with parallelization across the method
000885633 260__ $$aHeidelberg$$bSpringer$$c2020
000885633 3367_ $$2DRIVER$$aarticle
000885633 3367_ $$2DataCite$$aOutput Types/Journal article
000885633 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602851489_16749
000885633 3367_ $$2BibTeX$$aARTICLE
000885633 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885633 3367_ $$00$$2EndNote$$aJournal Article
000885633 520__ $$aTo extend prevailing scaling limits when solving time-dependent partial differential equations, the parallel full approximation scheme in space and time (PFASST) has been shown to be a promising parallel-in-time integrator. Similar to space–time multigrid, PFASST is able to compute multiple time-steps simultaneously and is therefore in particular suitable for large-scale applications on high performance computing systems. In this work we couple PFASST with a parallel spectral deferred correction (SDC) method, forming an unprecedented doubly time-parallel integrator. While PFASST provides global, large-scale “parallelization across the step”, the inner parallel SDC method allows integrating each individual time-step “parallel across the method” using a diagonalized local Quasi-Newton solver. This new method, which we call “PFASST with Enhanced concuRrency” (PFASST-ER), therefore exposes even more temporal concurrency. For two challenging nonlinear reaction-diffusion problems, we show that PFASST-ER works more efficiently than the classical variants of PFASST and can use more processors than time-steps.
000885633 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000885633 536__ $$0G:(GEPRIS)450829162$$aDFG project 450829162 - Raum-Zeit-parallele Simulation multimodale Energiesystemen (450829162)$$c450829162$$x1
000885633 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x2
000885633 588__ $$aDataset connected to CrossRef
000885633 7001_ $$0P:(DE-Juel1)132268$$aSpeck, Robert$$b1$$ufzj
000885633 773__ $$0PERI:(DE-600)1458972-2$$a10.1007/s00791-020-00330-5$$gVol. 23, no. 1-4, p. 12$$n1-4$$p12$$tComputing and visualization in science$$v23$$x1432-9360$$y2020
000885633 8564_ $$uhttps://juser.fz-juelich.de/record/885633/files/PFASST_ER%2814%29.pdf$$yOpenAccess
000885633 8564_ $$uhttps://juser.fz-juelich.de/record/885633/files/Sch%C3%B6bel-Speck2020_Article_PFASST-ERCombiningTheParallelF.pdf$$yOpenAccess
000885633 8564_ $$uhttps://juser.fz-juelich.de/record/885633/files/PFASST_ER%2814%29.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885633 8564_ $$uhttps://juser.fz-juelich.de/record/885633/files/Sch%C3%B6bel-Speck2020_Article_PFASST-ERCombiningTheParallelF.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885633 909CO $$ooai:juser.fz-juelich.de:885633$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885633 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169281$$aForschungszentrum Jülich$$b0$$kFZJ
000885633 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132268$$aForschungszentrum Jülich$$b1$$kFZJ
000885633 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000885633 9141_ $$y2020
000885633 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2019-12-20
000885633 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000885633 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2019-12-20
000885633 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2019-12-20
000885633 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2019-12-20
000885633 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2019-12-20$$wger
000885633 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885633 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2019-12-20
000885633 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2019-12-20
000885633 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2019-12-20$$wger
000885633 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2019-12-20
000885633 920__ $$lyes
000885633 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000885633 980__ $$ajournal
000885633 980__ $$aVDB
000885633 980__ $$aUNRESTRICTED
000885633 980__ $$aI:(DE-Juel1)JSC-20090406
000885633 9801_ $$aFullTexts