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Abstract To extend prevailing scaling limits when solv-

ing time-dependent partial differential equations, the

parallel full approximation scheme in space and time

(PFASST) has been shown to be a promising parallel-

in-time integrator. Similar to space-time multigrid, PFASST

is able to compute multiple time-steps simultaneously

and is therefore in particular suitable for large-scale ap-
plications on high performance computing systems. In

this work we couple PFASST with a parallel spectral

deferred correction (SDC) method, forming an unprece-

dented doubly time-parallel integrator. While PFASST

provides global, large-scale “parallelization across the

step”, the inner parallel SDC method allows integrating

each individual time-step “parallel across the method”
using a diagonalized local Quasi-Newton solver. This

new method, which we call “PFASST with Enhanced
concuRrency” (PFASST-ER), therefore exposes even

more temporal concurrency. For two challenging nonlin-

ear reaction-diffusion problems, we show that PFASST-

ER works more efficiently than the classical variants of
PFASST and can use more processors than time-steps.
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1 Introduction

The efficient use of modern high performance comput-

ing systems for solving space-time-dependent differen-
tial equations has become one of the key challenges

in computational science. Exploiting the exponentially

growing number of processors using traditional tech-

niques for spatial parallelism becomes problematic when,

for example, for a fixed problem size communication
costs start to dominate. Parallel-in-time integration meth-

ods have recently been shown to provide a promising

way to extend these scaling limits, see e.g. (Falgout

et al., 2017; Speck et al., 2012; Ruprecht et al., 2013)

to name but a few examples.

As one example, the “Parallel Full Approximation

Scheme in Space and Time” (PFASST) by Emmett and
Minion (Emmett and Minion, 2012) allows one to inte-

grate multiple time-steps simultaneously by using inner

iterations of spectral deferred corrections (SDC) on a

space-time hierarchy. It works on the so called compos-
ite collocation problem, where each time-step includes a

further discretization through quadrature nodes. This
“parallelization across the steps” approach (Burrage,

1997) targets large-scale parallelization on top of satu-

rated spatial parallelization of partial differential equa-

tions (PDEs), where parallelization in the temporal do-

main acts as a multiplier for standard parallelization

techniques in space. In contrast, “parallelization across

the method” approaches (Burrage, 1997) try to par-
allelize the integration within an individual time-step.

While this typically results in smaller-scale paralleliza-

tion in the time-domain, parallel efficiency and appli-

cability of these methods are often more favorable. Most

notably, the “revisionist integral deferred correction me-

thod” (RIDC) by Christlieb et al. (Christlieb et al.,

2010) makes use of integral deferred corrections (which
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are indeed closely related to SDC) in order to com-

pute multiple iterations in a pipelined way. In (Speck,
2018), different approaches for parallelizing SDC across

the method have been discussed, allowing the simulta-

neous computation of updates on multiple quadrature

nodes. A much more structured and complete overview
of parallel-in-time integration approaches can be found

in (Gander, 2015). The Parallel-in-Time community web-
site (https://parallel-in-time.org) offers a com-

prehensive list of references.

The key goal of parallel-in-time integrators is to ex-

pose additional parallelism in the temporal domain in

the cases where classical strategies like parallelism in

space are either already saturated or not even possible.

In (Clarke et al., 2019) the classical Parareal method (Li-
ons et al., 2001) is used to overcome the scaling limit of

a space-parallel simulation of a kinematic dynamo on
up to 1 600 cores. The multigrid extension of Parareal,

the “multigrid reduction in time” method (MGRIT),

has been shown to provide significant speedup beyond

spatial parallelization (Falgout et al., 2017) for a mul-

titude of problems. Using PFASST, a space-parallel N-
body solver has been extended in (Speck et al., 2012)

to run on up to 262 244 cores, while in (Ruprecht et al.,
2013) it has been coupled to a space-parallel multigrid

solver on up to 458 752 cores.

So far, parallel-in-time methods have been imple-

mented and tested either without any additional par-

allelization techniques or in combination with spatial

parallelism. The goal for this work is to couple two dif-

ferent parallel-in-time strategies in order to extend the

overall temporal parallelism exposed by the resulting

integrator. To this end, we take the diagonalization idea
for SDC presented in (Speck, 2018) (parallel across the

method) and use it within PFASST (parallel across the

steps). In this way we create an algorithm that com-

putes approximations for different time-steps simulta-
neously but also works in parallel on each time-step

itself. Doing so we combine the advantages of both par-
allelization techniques and create the “Parallel Full Ap-

proximation Scheme in Space and Time with Enhanced

concuRrency” (PFASST-ER), an unprecedented dou-

bly time-parallel integrator for PDEs. In the next sec-

tion we will first introduce SDC and PFASST from an
algebraic point of view, following (Bolten et al., 2017,

2018). We particularly focus on nonlinear problems and
briefly explain the application of a Newton solver within

PFASST. Then, this Newton solver is modified in Sec-

tion 3 so that by using a diagonalization approach the

resulting Quasi-Newton method can be computed in

parallel across the quadrature nodes of each time-step.
In Section 4, we compare different variants of this idea

to the classical PFASST implementation using two non-

linear reaction-diffusion test cases. We show parallel

runtimes for different setups and evaluate the impact
of the various Newton and diagonalization strategies.

Section 5 concludes this work with a short summary

and an outlook.

2 Parallelization across the steps with PFASST

We focus on an initial value problem

ut = f(u), u(0) = u0 (1)

with u(t), u0, f(u) ∈ R. In order to keep the notation

simple, we do not consider systems of initial value prob-

lems for now, where u(t) ∈ R
N . Necessary modifica-

tions will be mentioned where needed. In a first step,
we now discretize this problem in time and review the

idea of single-step, time-serial spectral deferred correc-

tions (SDC).

2.1 Spectral deferred corrections

For one time-step on the interval [tl, tl+1] the Picard

formulation of Equation (1) is given by

u(t) = ul,0 +

∫ t

t0

f(u(s))ds, t ∈ [tl, tl+1]. (2)

To approximate the integral we use a spectral quadra-

ture rule. We define M quadrature nodes τl,1, ..., τl,M ,

which are given by tl ≤ τl,1 < ... < τl,M = tl+1.

We will in the following explicitly exploit the condi-

tion that the last node is equal to the right integral
boundary. Quadrature rules like Gauß-Radau or Gauß-

Lobatto quadrature satisfy this property. We can then

approximate the integrals from tl to the nodes τl,m,

such that

ul,m = ul,0 +∆t

M
∑

j=1

qm,jf(ul,j),

where ul,m ≈ u(τl,m), ∆t = tl+1− tl and qm,j represent
the quadrature weights for the interval [tl, τl,m] such

that

M
∑

j=1

qm,jf(ul,j) ≈
∫ τl,m

tl

f(u(s))ds.

We combine these M equations into one system

(I−∆tQf) (ul) = ul,0, (3)

which we call the “collocation problem”. Here, ul =

(ul,1, ..., ul,M )T ≈ (u(τl,1), ..., u(τl,M ))T ∈ R
M , ul,0 =
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(ul,0, ..., ul,0)
T ∈ R

M , Q = (qij)i,j ∈ R
M×M is the ma-

trix gathering the quadrature weights and the vector
function f : RM → R

M is given by

f(ul) = (f(ul,1), ..., f(ul,M ))T .

To simplify the notation we define

Ccoll
f (ul) := (I−∆tQf) (ul).

We note that for u(t) ∈ R
N , we need to replace Q by

Q⊗ IN , where ⊗ denotes the Kronecker product.

System (3) is dense and a direct solution is not ad-

visable, in particular if f is a nonlinear operator. The
spectral deferred correction method solves the colloca-

tion problem in an iterative way. While it has been

derived originally from classical deferred or defect cor-

rection strategies, we here follow (Huang et al., 2006;

Weiser, 2014; Ruprecht and Speck, 2016) to present
SDC as preconditioned Picard iteration. A standard Pi-

card iteration is given by

uk+1
l = uk

l + (ul,0 −Ccoll
f (uk

l ))

for k = 0, . . . ,K, and some initial guess u0
l .

In order to increase range and speed of convergence,
we now precondition this iteration. The standard ap-

proach to preconditioning is to define an operator Psdc
f ,

which is easy to invert but also close to the operator of

the system. We define this “SDC preconditioner” as

Psdc
f (ul) := (I−∆tQ∆f) (ul)

so that the preconditioned Picard iteration reads

Psdc
f (uk+1

l ) = (Psdc
f −Ccoll

f )(uk
l ) + ul,0. (4)

The key for defining Psdc
f is the choice of the matrix

Q∆. The idea is to choose a “simpler” quadrature rule

to generate a triangular matrix Q∆ such that solving

System (4) can be done by forward substitution. Com-

mon choices include the implicit Euler method or the
so-called “LU-trick”, where the LU decomposition of

QT with

QLU
∆ = UT for QT = LU (5)

is used (Weiser, 2014).

System (4) establishes the method of spectral de-
ferred corrections, which can be used to approximate

the solution of the collocation problem on a single time-

step. In the next step, we will couple multiple colloca-

tion problems and use SDC to explain the idea of the

parallel full approximation scheme in space and time.

2.2 Parallel full approximation scheme in space and

time

The idea of PFASST is to solve a “composite collocation

problem” for multiple time-steps at once using multi-

grid techniques and SDC for each step in parallel. This
composite collocation problem for L time-steps can be

written as










Ccoll
f

−H Ccoll
f

. . .
. . .

−H Ccoll
f





















u1

u2

...

uL











=











u0,0

0
...

0











,

where the matrix H ∈ R
M×M on the lower subdi-

agonal transfers the information from one time-step

to the next one. It takes the value of the last node
τl,M of an interval [tl, tl+1], which is by requirement

equal to the left boundary tl+1 of the following inter-
val [tl+1, tl+2], and provides it as a new starting value

for this interval. Therefore, the matrix H contains the

value 1 on every position in the last column and ze-

ros elsewhere. To write the composite collocation prob-

lem in a more compact form we define the vector u =
(u1, ...,uL)

T ∈ R
LM , which contains the solution at

all quadrature nodes at all time-steps, and the vector
b = (u0,0,0, ...,0)

T ∈ R
LM , which contains the initial

condition for all nodes at the first interval and zeros

elsewhere. We define F : RLM → R
LM as an extension

of f so that F (u) = (f(u1), . . . ,f(uL))
T
. Then, the

composite collocation problem can be written as

CF (u) = b. (6)

with

CF (u) = (I−∆t(IL ⊗Q)F −E⊗H) (u),

where the matrix E ∈ R
L×L just has ones on the first

subdiagonal and zeros elsewhere. If u ∈ R
N , we need to

replace H by H⊗ IN .

SDC can be used to solve the composite collocation
problem by forward substitution in a sequential way,

which means to solve one time-step after each other us-

ing the previous solution as initial value of the current

time-step. The parallel-in-time integrator PFASST, on

the other hand solves the composite collocation prob-
lem by calculating on all time-steps simultaneously and

is therefore an attractive alternative. The first step from
SDC towards PFASST is the introduction of multi-

ple levels, which are representations of the problem

with different accuracies in space and time. In order

to simplify the notation we focus on a two-level scheme

consisting of a fine and a coarse level. Coarsening can
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communication in the picture represented by small ar-

rows, which connect the coarse sweeps of each interval.
In (7), the need for communication with a neighboring

process is obvious, because P̃F is not a (block-) diago-

nal matrix, but has entries on its lower block-diagonal.

PF on the other hand is block-diagonal, which means
that the processors can calculate on the fine level in par-

allel. We see in (9) that there is only a connection to
previous time-steps through the right-hand side, where

we gather values from the previous time-step and iter-

ation but not from the current iteration. The picture

shows this connection by a fine communication, which

forwards data from each fine sweep to the following fine
sweep of the right neighbor. The fine and coarse calcu-

lations on every processor are connected through the
FAS corrections, which in our formula are part of the

coarse sweep.

2.3 PFASST-Newton

For each coarse and each fine sweep within each PFASST

iteration, System (7) and System (9), respectively, need

to be solved. If f is a nonlinear function these systems
are nonlinear as well. The obvious and traditional way

to proceed in this case is to linearize the problem locally
(i.e. for each time-step, at each quadrature node) using

Newton’s method. This way, PFASST is the outer solver

with an inner Newton iteration. For triangular Q∆, the

mth equation on the lth time-step on the coarse level

reads

(1−∆t q̃∆l,mf̃)(ũk+1
l,m ) = ũk+1

l,0

+∆t

m−1
∑

n=1

q̃∆l,nf̃(ũ
k+1
l,n )

+ c̃(ũk)l,m,

where ũk+1
0,0 = ũ0,0 and c̃(ũk)l,m is themth entry the lth

block of c̃(ũk) := (P̃F −C̃F )(ũ
k)+τk. This term gath-

ers all values of the previous iteration. The first sum-

mand of the right-hand side of the coarse level equation
corresponds to b̃ and H̃, while the following sum comes

from the lower triangular structure of Q̃∆.

For time-step l these equations can be solved one

by one using Newton iterations and forward substitu-
tion. This is inherently serial, because the solution on

the mth quadrature node depends on the solution at

all previous nodes through the sum. Thus, while run-

ning parallel across the steps, each solution of the local

collocation problem is found in serial. In the next sec-
tion, we will present a novel way of applying Newton’s

method, which allows one to parallelize this part across

the collocation nodes, joining parallelization across the

step with parallelization across the method.

3 PFASST-ER

From the perspective of a single time-step [tl, tl+1] or
processor Pl, Equation (7) on the coarse level for this

step reads

P̃sdc
f (ũk+1

l )− ũk+1
l,0 = (P̃sdc

f − C̃coll
f )(ũk

l ) + τkl ,

where τkl is the lth component of τk, belonging to the

interval [tl, tl+1]. Note that the serial dependency is
given by the term ũk+1

l,0 , so that it does not depend

on the solution ũk+1
l of this equation and can thus be

considered as part of a given right-hand side. On the

fine level, this is even simpler, because there we have to

solve

Psdc
f (uk+1

l ) = (Psdc
f −Ccoll

f )(u
k+ 1

2

l ) + u
k+ 1

2

l,0 ,

where the u
k+ 1

2

l,0 -term is independent of the current it-

eration (which, of course, leads to the parallelism on

the fine level).

As we have seen above, the typical strategy would
be to solve these systems line by line, node by node, us-

ing forward substitution and previous PFASST iterates

as initial guesses. An alternative approach has been pre-

sented in (Speck, 2018), where each SDC iteration can

be parallelized across the nodes. While this is trivial for
linear problems, nonlinear ones require the linearization

of the full equations, not node-wise as before. For the
fine sweep, let

Gsdc
f (v) := Psdc

f (v)− (Psdc
f −Ccoll

f )(u
k+ 1

2

l )− u
k+ 1

2

l,0

then a Newton step for Gsdc
f (v) = 0 is given by

∇Gsdc
f (vj)ej = −Gsdc

f (vj),

vj+1 = vj + ej ,

for Jacobian matrix ∇Gsdc
f (vj) of Gsdc

f evaluated at vj .

We have

∇Gsdc
f (vj) = ∇Psdc

f (vj)

= I−∆tQ∆∇f(vj)

for Jacobian matrix ∇f(vj) of f evaluated at vj which

in turn is given by

∇f(vj) = diag(f ′(vj1), ..., f
′(vjM ))T .
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There is still no parallelism to exploit, but when we re-

place the full Jacobian matrix ∇f(vj) by the approx-
imation f ′(vl,0)IM , which is the derivative of f at the

initial value for the current time-step, we can use

∇Gsdc
f (vj) ≈ ∇G

∆-QN
f (vl,0) := I− f ′(vl,0)∆tQ∆

to establish a Quasi-Newton iteration as

∇G
∆-QN
f (vl,0)e

j = −Gsdc
f (vj),

vj+1 = vj + ej .

This decouples the evaluation of the Jacobian matrix

from the current quadrature nodes and now Q∆ can
be diagonalized, so that the inversion of ∇G

∆-QN
f (vl,0)

can be parallelized across the nodes. Note that there are

other options for approximating the full Jacobian ma-
trix. Most notably, in (Gander et al., 2016) the mean

over all Jacobian matrices is used (there across the

time-steps). We did not see any impact on the conver-

gence when following this strategy, most likely because
the number of quadrature nodes is typically rather low.

The advantage of using the initial value is that it re-

duces the number of evaluations of the Jacobian matrix,

which also includes communication time.

Provided that Q∆ is diagonalizable, we can decom-

pose it byQ∆ = V∆Λ∆V−1
∆ , whereΛ∆ = diag((Q∆)ii)

contains the eigenvalues (Q∆)ii ∈ R of Q∆ and V con-
tains its eigenvectors.

Using the given diagonalization the algorithm reads:

1. replace rj = −Gsdc
f (vj) by r̄j = −V−1

∆ Gsdc
f (vj)

(serial),

2. solve (I− f ′(vl,0)∆tΛ∆) ēj = r̄j (parallel in M),

3. replace ēj by ej = V∆ēj (serial),
4. set vj+1 = vj + ej (parallel in M).

This can be iterated until a certain threshold is reached

and then set uk+1
l = vJ to obtain the solution of the

equation for the fine sweep. On the coarse level, the

procedure is very similar, with a slightly different def-
inition of G̃sdc

f̃
(ṽ). In practice, choosing only a single

Newton iteration (i.e. J = 1) is sufficient, because this

is only the inner solver for an outer PFASST iteration.
In all cases we have studied so far, using more inner

iterations does not lead to a faster overall method.

This linearization and diagonalization strategy im-

mediately suggests a second approach: instead of us-

ing Q∆ for the preconditioner, we can use the orig-

inal quadrature matrix Q directly. The intention of

using Q∆ in the first place was to obtain a precon-

ditioner which allowed inversion using forward substi-
tutions. Now, with diagonalization in place, this is no

longer necessary. Instead, we can use

Pcoll
f := Ccoll

f

and thus

Gcoll
f (v) := Ccoll

f (v)− u
k+ 1

2

l,0 .

Note that this is just the lth block of the original com-
posite collocation problem. Following the same ideas as

before, we end up with

∇Gcoll
f (vj) ≈ ∇G

QN
f (vl,0) := I− f ′(vl,0)∆tQ,

which can be diagonalized using Q = VΛV−1, where
Λ is a diagonal matrix with eigenvalues λi(Q) ∈ C. The

same idea can be applied to the coarse level sweep, of

course. As a result, the original nonlinear SDC sweeps

within PFASST are now replaced by Quasi-Newton it-

erations which can be done parallel across the nodes.
We note that using simplified or Quasi-Newton meth-

ods for solving implicit Runge-Kutta schemes is a stan-

dard approach, as e.g. (Wanner and Hairer, 1996) shows.

We further refer to (Speck, 2018) for more details on the

idea of parallel SDC sweeps with Q and Q∆.

The question now is, how much the approximation

of the Jacobians affects the convergence and runtime

of the method and how all this compares to standard

PFASST iterations. It is well known that for suitable

right-hand sides and initial guesses the standard, un-

modified Newton method converges quadratically while
the Quasi-Newton method as well as SDC show linear

convergence, see e.g. (Kelley, 1995; Jackson et al., 1994;

Tang et al., 2013). We will examine the impact of these

approaches in the following section along the lines of

two numerical examples. A more rigorous mathemati-

cal analysis is currently ongoing work, as it can be em-

bedded into a larger convergence theory for PFASST
with inner Newton-type solvers.

4 Numerical Results

We apply PFASST and PFASST-ER to two different,

rather challenging reaction-diffusion problems, starting
with a detailed analysis of the parallelization strate-

gies for the Allen-Cahn equation and highlighting dif-
ferences to these findings for the Gray-Scott equations.

4.1 Allen-Cahn equation

We study the two-dimensional Allen-Cahn equation,

which is given by

ut = ∆u+
1

ε2
u(1− u) (10)
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on the spatial domain [−0.5, 0.5]2 and with initial con-

dition

u0 = tanh

(

R0 − (x2 + y2)√
2ε

)

,

and periodic boundary conditions. We use simple second-

order finite differences for discretization in space and

take 256 elements in each dimension on the fine level
and 128 on the coarse one. We furthermore use M = 4

Gauß-Radau nodes, set ε = 0.04, ∆t = 0.001 < ε2 and
stop the simulation after 24 time-steps at T = 0.024.

The initial condition describes a circle with a radius
R0 = 0.25, see e.g. (Zhang and Du, 2009).

Note that since our focus is on the temporal par-

allelization, the temporal resolution was chosen to be

quite high in contrast to the spatial resolution. Errors in

space and time are not balanced here (and in the follow-
ing example), with the spatial error being much higher.

This has been done deliberately to avoid higher compu-

tational costs. By increasing the accuracy in space, we

would increase the amount of large parallelizable com-

putations in relation to communication. This would in
turn improve the overall parallel efficiency, which would

in the end lead to even better scaling results. However,
when using parallelization in space, all processors have

very few degrees-of-freedom anyway, so our results may

even reflect a “real” situation better.

The results we present in the following were com-

puted with pySDC (Speck, 2019a,b) on the supercom-

puter JURECA (Jülich Supercomputing Centre, 2016).

We run a serial single-level simulation using SDC (“SL”

in the plots), a serial multi-level simulation using multi-
level SDC (“ML”, which is PFASST on one processor,

see (Speck et al., 2015)) and parallel simulations with

2, 4, 8, 12 and 24 processors (“P2” to “P24”), all until

a given residual tolerance of 10−10 is reached.

If less processors than time-steps are used, the time

domain is split into blocks of parallel PFASST runs.

These are handled sequentially, using the solution of

the previous block as the initial data for the next one.
For example, 6 processors work on the first 6 time-steps

until convergence and the solution is used as new initial
condition for the next block of 6 time-steps. This is

repeated until all 24 time-steps have been completed.

In Figure 2 we show the maximum number of linear

solves which were performed by the slowest processor

(i.e. last processor in time) for different versions of the

solvers, aggregated over all its time-steps and quadra-

ture nodes, over all outer and inner iterations.

Here, two versions of the original PFASST algorithm

are run: The first one performs exactly one inner New-
ton iteration in every PFASST iteration; this version

is labeled as “PFASST: 1 iter”. In contrast, “PFASST:

SL ML P2 P4 P8 P12 P24

100

1,000

algorithm

n
u
m
b
er

o
f
li
n
ea
r
so
lv
es

PFASST: N iter
PFASST: 1 iter
PFASST-ER: Q∆

PFASST-ER: Q

Fig. 2: Number of linear solves for the Allen-Cahn ex-

ample, all methods run serial on the nodes.

N iter” performs as many inner Newton iterations re-

quired so that the residual of the nonlinear inner prob-

lem is less than 10−11. Both PFASST versions use the

quadrature matrix QLU
∆ from Equation (5) inside the

preconditioner. For PFASST-ER we also show two vari-

ants: The PFASST-ER algorithm, which uses the origi-
nal Q inside the preconditioner is labeled as ”PFASST-

ER: Q” and the one which uses QLU
∆ is labeled as

“PFASST-ER: Q∆”. Solving the innermost linear sys-

tems is done using GMRES with a tolerance of 10−12

in all cases.

We can see that performing more than one inner

Newton iteration (“PFASST: N iter” vs. “PFASST: 1

iter”) does not improve the convergence of the over-
all algorithm. Although it is possible that by increas-

ing the number of inner Newton iterations the number

of outer PFASST iterations decreases, the total effort,

which can be measured by the total number of linear

solves, increases due to a higher number of inner New-
ton iterations.

Using the Quasi-Newton approach with the same

preconditioner instead of the classical Newton solver

(“PFASST-ER: Q∆” vs. “PFASST: 1 iter”) shows lit-

tle effect on the total iteration numbers, but using the

original quadrature matrix Q instead of QLU
∆ inside

the preconditioner (“PFASST-ER: Q” vs. “PFASST-

ER: Q∆”) greatly reduces the number of iterations.

However, without parallelization one iteration of PFASST-
ER with Q is in general more expensive than one iter-

ation of the other algorithms, because it requires the

solution of a full system via diagonalization instead of

stepping through a triangular system via forward sub-

stitution. In Figure 3, we thus examine whether the

lower number of more expensive iterations actually pays

off. The plot shows results for the same setup as Figure
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Fig. 8: Number of linear solves for the Gray-Scott ex-

ample, all methods run serial on the nodes.

on the spatial domain [0, 1]×[0, 1], with periodic bound-

ary conditions. As initial condition we choose a circle

with radius 0.05 centred in the spatial domain, where

u = 0.5 and v = 0.25 on the inside, and u = 1.0

and v = 0 outside of this circle. We use Du = 10−4,
Dv = 10−5 and set a feed rate of F = 0.0367 and a

kill rate of K = 0.0649. This leads after some time to
a process similar to cellular division and is known as

“mitosis”. We discretize the spatial domain with 128

points in each dimension on the fine level and with 64

on the coarse one, using standard finite differences. We

discretize every time-step of size ∆t = 1 with 4 quadra-

ture nodes and run the simulation again for 24 time-

steps.

The results are similar to the ones for the Allen-
Cahn equation in the previous section. We will omit

the case of PFASST with more than one inner Newton

iteration, though.

We start again by looking at the total number of
linear solves the different algorithms need to perform.

Figure 8 shows the number of linear solves for the meth-
ods, which run until a residual tolerance of 10−12 is

reached. The results look quite similar to the ones for

the previous example, with one critical difference: The

difference between the Q-variant of PFASST-ER and

the other algorithms becomes smaller more rapidly the
more parallel time-steps are used. There is no obvious

explanation (at least, obvious to us) for this behavior,
though. The more time steps are approximated simul-

taneously, the less suitable u0 works as initial value for

more distant time-steps. Although the full Newton and

the Quasi-Newton methods differ by an order of conver-

gence in theory, in our scenario this seems relevant only

for good initial values. One can expect that the runtime

will increase when using PFASST-ER with Q, while it
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Fig. 9: Time to solution for Gray-Scott with paralleliza-

tion only across time-steps.

stayed about the same in the case of the Allen-Cahn

example.

This is precisely what we can see in Figure 9. The

more parallel time-steps are run, the less efficient PFASST-
ER with Q in this variant becomes. Already at 3 paral-

lel steps, it is as costly as the original PFASST version,

at least when parallelization across the nodes is not

considered.

Now, adding node-parallelization, the findings are
again similar to the ones in the previous section: Fig-

ure 10 shows that PFASST-ER with Q is still more

efficient than using PFASST. In particular, using more

cores on the nodes is better and the best combination

is again 4 cores on the nodes and 6 on the steps. Again,

this changes when considering PFASST-ER with Q∆

as in Figure 11, where the ideal setup uses only 2 cores

on the nodes, but 12 on the steps. This is again due
to load imbalances of the innermost linear solves. How-

ever, note the key difference to the previous results: The

fastest run of the Q∆-variant is now faster than the one

of the Q-variant.

In Figure 12 we now give an overview of the best
results: If we use parallelism across the nodes in a suit-

able way, both PFASST-ER versions are more efficient
based on the simulation time than the classical PFASST

algorithm. Both can be used to extend the scaling ca-

pabilities beyond the number of time-steps, and both

scale rather well in this regime. Note, however, that

the Q∆-variant can here only leverage 2 × 24 cores. It

is then faster than the Q-variant with twice as many

cores.
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ulation beyond the number of parallel time-steps. For

the Q-preconditioner, the overall number of iterations
was lower and time-to-solution was faster. Adding node-

parallelization, parallel efficiency can be increased and

speedup extended when compared to PFASST. Both

PFASST-ER versions lead in the end to better scaling
results than the classical PFASST algorithm. PFASST-

ER Q especially offers an almost equal distribution of
work for iterative linear solvers with respect to the in-

dividual quadrature nodes of a time-step. This advan-

tage makes this algorithm particularly flexible and can

be used for any number of quadrature points.

PFASST-ER is particularly favorable if an increase

in parallelism across the steps would lead to a severe in-
crease in the number of iterations. This could be due to

e.g. the type of the equation or the coarsening strategy.

During our experiments we saw that it is not clear a pri-

ori which combination of node- and step-parallelization

is the most efficient one. This could lead to many, po-

tentially irrelevant runs to find the sweet spot. Here, a

performance model and a suitable convergence theory
are needed to at least narrow down the relevant options.

This has to be accompanied by more numerical tests,

relating e.g. model parameters with load imbalances, to

identify the limits of this approach.
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Centre. Journal of large-scale research facilities, 2
(A62), 2016. doi: 10.17815/jlsrf-2-121. URL http:

//dx.doi.org/10.17815/jlsrf-2-121.

C. T. Kelley. Iterative Methods for Linear and Non-

linear Equations. Number 16 in Frontiers in Applied

Mathematics. SIAM, 1995.

F. Koehler. PFASST TikZ. https://github.com/

Parallel-in-Time/pfasst-tikz, 2015.
J.-L. Lions, Y. Maday, and G. Turinici. A ”parareal”

in time discretization of PDE’s. Comptes Rendus

de l’Académie des Sciences - Series I - Mathemat-

ics, 332:661–668, 2001. URL http://dx.doi.org/

10.1016/S0764-4442(00)01793-6.

J. E. Pearson. Complex patterns in a simple system.

Science, 261(5118):189–192, 1993.



PFASST-ER 13

D. Ruprecht and R. Speck. Spectral deferred correc-

tions with fast-wave slow-wave splitting. SIAM Jour-

nal on Scientific Computing, 38(4):A2535–A2557,

2016.

D. Ruprecht, R. Speck, M. Emmett, M. Bolten, and

R. Krause. Poster: Extreme-scale space-time par-
allelism. In Proceedings of the 2013 Conference on

High Performance Computing Networking, Storage

and Analysis Companion, SC ’13 Companion, 2013.

URL http://sc13.supercomputing.org/sites/

default/files/PostersArchive/tech_posters/

post148s2-file3.pdf.

R. Speck. Parallelizing spectral deferred corrections
across the method. Computing and Visualization in

Science, 19(3-4):75–83, 2018. ISSN 1433-0369. doi:
10.1007/s00791-018-0298-x. URL https://juser.

fz-juelich.de/record/849786. Online first.

R. Speck. Algorithm 997: pySDC - Prototyping Spec-

tral Deferred Corrections. ACM Transactions on

Mathematical Software, 45(3), 2019a. URL https:

//doi.org/10.1145/3310410.

R. Speck. Website for pySDC, 2019b. https://

parallel-in-time.org/pySDC/, [Online; accessed

November 27, 2019].

R. Speck, D. Ruprecht, R. Krause, M. Emmett, M. Min-

ion, M. Winkel, and P. Gibbon. A Massively Space-
time Parallel N-body Solver. In Proceedings of the

International Conference on High Performance Com-

puting, Networking, Storage and Analysis, SC ’12,

pages 92:1–92:11, Los Alamitos, CA, USA, 2012.

IEEE Computer Society Press. ISBN 978-1-4673-

0804-5. URL http://dl.acm.org/citation.cfm?

id=2388996.2389121. event-place: Salt Lake City,
Utah.

R. Speck, D. Ruprecht, M. Emmett, M. L. Minion,
M. Bolten, and R. Krause. A multi-level spectral de-

ferred correction method. BIT Numerical Mathemat-

ics, 55:843–867, 2015. URL http://dx.doi.org/10.

1007/s10543-014-0517-x.
T. Tang, H. Xie, and X. Yin. High-order convergence

of spectral deferred correction methods on general

quadrature nodes. Journal of Scientific Computing,

56(1):1–13, 2013.

U. Trottenberg, C. Oosterlee, and A. Schuller. Multi-

grid. Academic Press, 2000.

G. Wanner and E. Hairer. Solving ordinary differential

equations II. Springer Berlin Heidelberg, 1996.

M. Weiser. Faster SDC convergence on non-equidistant

grids by DIRK sweeps. BIT Numerical Mathematics,

55(4):1219–1241, 2014.

J. Zhang and Q. Du. Numerical studies of discrete ap-

proximations to the allen-cahn equation in the sharp

interface limit. SIAM Journal on Scientific Comput-

ing, 31(4):3042–3063, 2009. doi: 10.1137/080738398.

URL https://doi.org/10.1137/080738398.


