
Computing and Visualization in Science (2020) 23:12
https://doi.org/10.1007/s00791-020-00330-5

P INT 2019

PFASST-ER: combining the parallel full approximation scheme in space
and time with parallelization across the method

Ruth Schöbel1 · Robert Speck2

Received: 2 December 2019 / Accepted: 22 June 2020
© The Author(s) 2020

Abstract
To extend prevailing scaling limits when solving time-dependent partial differential equations, the parallel full approximation
scheme in space and time (PFASST) has been shown to be a promising parallel-in-time integrator. Similar to space–time
multigrid, PFASST is able to compute multiple time-steps simultaneously and is therefore in particular suitable for large-
scale applications on high performance computing systems. In this work we couple PFASST with a parallel spectral deferred
correction (SDC) method, forming an unprecedented doubly time-parallel integrator. While PFASST provides global, large-
scale “parallelization across the step”, the inner parallel SDC method allows integrating each individual time-step “parallel
across themethod” using a diagonalized local Quasi-Newton solver. This newmethod, whichwe call “PFASSTwith Enhanced
concuRrency” (PFASST-ER), therefore exposes even more temporal concurrency. For two challenging nonlinear reaction-
diffusion problems, we show that PFASST-ER works more efficiently than the classical variants of PFASST and can use more
processors than time-steps.

Keywords Parallel-in-time integration · Parallel full approximation scheme in space and time · Spectral deferred corrections ·
Parallelization across the method · Parallelization across the step · Quasi-Newton

1 Introduction

The efficient use of modern high performance computing
systems for solving space–time-dependent differential equa-
tions has become one of the key challenges in computational
science. Exploiting the exponentially growing number of
processors using traditional techniques for spatial parallelism
becomes problematic when, for example, for a fixed problem
size communication costs start to dominate. Parallel-in-time
integration methods have recently been shown to provide
a promising way to extend these scaling limits, see e.g.
[7,18,22] to name but a few examples.

Communicated by Sebastian Schöps.

B Ruth Schöbel
ruth.schoebel@tu-dresden.de

Robert Speck
r.speck@fz-juelich.de

1 Institut für Numerische Mathematik, TU Dresden, Dresden,
Germany

2 Jülich Supercomputing Centre, Forschungszentrum Jülich
GmbH, Jülich, Germany

Asone example, the “Parallel FullApproximationScheme
in Space and Time” (PFASST) by Emmett and Minion [6]
allows one to integratemultiple time-steps simultaneously by
using inner iterations of spectral deferred corrections (SDC)
on a space–time hierarchy. It works on the so called com-
posite collocation problem, where each time-step includes a
further discretization through quadrature nodes. This “paral-
lelization across the steps” approach [3] targets large-scale
parallelization on top of saturated spatial parallelization of
partial differential equations (PDEs), where parallelization
in the temporal domain acts as a multiplier for standard par-
allelization techniques in space. In contrast, “parallelization
across the method” approaches [3] try to parallelize the inte-
gration within an individual time-step. While this typically
results in smaller-scale parallelization in the time-domain,
parallel efficiency and applicability of these methods are
often more favorable. Most notably, the “revisionist inte-
gral deferred correction method” (RIDC) by Christlieb et
al. [4] makes use of integral deferred corrections (which are
indeed closely related to SDC) in order to compute multiple
iterations in a pipelined way. In [19], different approaches
for parallelizing SDC across the method have been dis-
cussed, allowing the simultaneous computation of updates on

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00791-020-00330-5&domain=pdf

 12 Page 2 of 12 R. Schöbel, R. Speck

multiple quadrature nodes.Amuchmore structured and com-
plete overview of parallel-in-time integration approaches can
be found in [8]. The Parallel-in-Time community website
(https://parallel-in-time.org) offers a comprehensive list of
references.

The key goal of parallel-in-time integrators is to expose
additional parallelism in the temporal domain in the cases
where classical strategies like parallelism in space are either
already saturated or not even possible. In [5] the classical
Parareal method [15] is used to overcome the scaling limit of
a space-parallel simulation of a kinematic dynamo on up to
1600 cores. The multigrid extension of Parareal, the “multi-
grid reduction in time” method (MGRIT), has been shown to
provide significant speedup beyond spatial parallelization [7]
for a multitude of problems. Using PFASST, a space-parallel
N-body solver has been extended in [22] to run on up to
262,244 cores, while in [18] it has been coupled to a space-
parallel multigrid solver on up to 458,752 cores.

So far, parallel-in-time methods have been implemented
and tested either without any additional parallelization tech-
niques or in combination with spatial parallelism. The goal
for this work is to couple two different parallel-in-time strate-
gies in order to extend the overall temporal parallelism
exposed by the resulting integrator. To this end, we take
the diagonalization idea for SDC presented in [19] (paral-
lel across the method) and use it within PFASST (parallel
across the steps). In this way we create an algorithm that
computes approximations for different time-steps simulta-
neously but also works in parallel on each time-step itself.
Doing so we combine the advantages of both paralleliza-
tion techniques and create the “Parallel Full Approximation
Scheme in Space and Time with Enhanced concuRrency”
(PFASST-ER), an unprecedented doubly time-parallel inte-
grator for PDEs. In the next section we will first introduce
SDC and PFASST from an algebraic point of view, follow-
ing [1,2]. We particularly focus on nonlinear problems and
briefly explain the application of a Newton solver within
PFASST. Then, this Newton solver is modified in Sect. 3
so that by using a diagonalization approach the resulting
Quasi-Newton method can be computed in parallel across
the quadrature nodes of each time-step. In Sect. 4, we com-
pare different variants of this idea to the classical PFASST
implementation using two nonlinear reaction-diffusion test
cases. We show parallel runtimes for different setups and
evaluate the impact of the various Newton and diagonaliza-
tion strategies. Section 5 concludes this work with a short
summary and an outlook.

2 Parallelization across the steps with
PFASST

We focus on an initial value problem

ut = f (u), u(0) = u0 (1)

with u(t), u0, f (u) ∈ R. In order to keep the notation sim-
ple, we do not consider systems of initial value problems
for now, where u(t) ∈ R

N . Necessary modifications will be
mentioned where needed. In a first step, we now discretize
this problem in time and review the idea of single-step, time-
serial spectral deferred corrections (SDC).

2.1 Spectral deferred corrections

For one time-step on the interval [tl , tl+1] the Picard formu-
lation of Eq. (1) is given by

u(t) = ul,0 +
∫ t

t0
f (u(s))ds, t ∈ [tl , tl+1]. (2)

To approximate the integral we use a spectral quadrature
rule. We define M quadrature nodes τl,1, . . . , τl,M , which
are given by tl ≤ τl,1 < · · · < τl,M = tl+1. We will in the
following explicitly exploit the condition that the last node
is equal to the right integral boundary. Quadrature rules like
Gauß-Radau or Gauß-Lobatto quadrature satisfy this prop-
erty. We can then approximate the integrals from tl to the
nodes τl,m , such that

ul,m = ul,0 + Δt
M∑
j=1

qm, j f (ul, j),

where ul,m ≈ u(τl,m), Δt = tl+1 − tl and qm, j represent the
quadrature weights for the interval [tl , τl,m] such that

M∑
j=1

qm, j f (ul, j) ≈
∫ τl,m

tl
f (u(s))ds.

We combine these M equations into one system

(I − ΔtQ f) (ul) = ul,0, (3)

which we call the “collocation problem”. Here, ul =
(ul,1, . . . , ul,M)T ≈ (u(τl,1), . . . , u(τl,M))T ∈ R

M , ul,0 =
(ul,0, . . . , ul,0)T ∈ R

M ,Q = (qi j)i, j ∈ R
M×M is the matrix

gathering the quadrature weights and the vector function
f : RM → R

M is given by

f (ul) = (f (ul,1), . . . , f (ul,M))T .

To simplify the notation we define

Ccoll
f (ul) := (I − ΔtQ f) (ul).

123

https://parallel-in-time.org

PFASST-ER: combining the parallel full approximation scheme in space and time with… Page 3 of 12 12

We note that for u(t) ∈ R
N , we need to replaceQ byQ⊗IN ,

where ⊗ denotes the Kronecker product.
System (3) is dense and a direct solution is not advis-

able, in particular if f is a nonlinear operator. The spectral
deferred correction method solves the collocation problem
in an iterative way. While it has been derived originally from
classical deferred or defect correction strategies, we here
follow [10,17,27] to present SDC as preconditioned Picard
iteration. A standard Picard iteration is given by

uk+1
l = ukl + (ul,0 − Ccoll

f (ukl))

for k = 0, . . . , K , and some initial guess u0l .
In order to increase range and speed of convergence, we

now precondition this iteration. The standard approach to
preconditioning is to define an operator Psdc

f , which is easy
to invert but also close to the operator of the system. We
define this “SDC preconditioner” as

Psdc
f (ul) := (I − ΔtQΔ f) (ul)

so that the preconditioned Picard iteration reads

Psdc
f (uk+1

l) = (Psdc
f − Ccoll

f)(ukl) + ul,0. (4)

The key for defining Psdc
f is the choice of the matrix QΔ.

The idea is to choose a “simpler” quadrature rule to generate
a triangular matrix QΔ such that solving System (4) can be
done by forward substitution. Common choices include the
implicit Euler method or the so-called “LU-trick”, where the
LU decomposition of QT with

QLU
Δ = UT for QT = LU (5)

is used [27].
System (4) establishes the method of spectral deferred

corrections, which can be used to approximate the solution
of the collocation problem on a single time-step. In the next
step, we will couple multiple collocation problems and use
SDC to explain the idea of the parallel full approximation
scheme in space and time.

2.2 Parallel full approximation scheme in space and
time

The idea of PFASST is to solve a “composite collocation
problem” for multiple time-steps at once using multigrid
techniques and SDC for each step in parallel. This composite
collocation problem for L time-steps can be written as

⎛
⎜⎜⎜⎜⎝

Ccoll
f

−H Ccoll
f

. . .
. . .

−H Ccoll
f

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

u1
u2
...

uL

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

u0,0
0
...

0

⎞
⎟⎟⎟⎠ ,

where the matrix H ∈ R
M×M on the lower subdiagonal

transfers the information from one time-step to the next
one. It takes the value of the last node τl,M of an interval
[tl , tl+1], which is by requirement equal to the left bound-
ary tl+1 of the following interval [tl+1, tl+2], and provides
it as a new starting value for this interval. Therefore, the
matrix H contains the value 1 on every position in the last
column and zeros elsewhere. To write the composite col-
location problem in a more compact form we define the
vector u = (u1, . . . , uL)T ∈ R

LM , which contains the solu-
tion at all quadrature nodes at all time-steps, and the vector
b = (u0,0, 0, . . . , 0)T ∈ R

LM , which contains the initial
condition for all nodes at the first interval and zeros else-
where. We define F : RLM → R

LM as an extension of f
so that F(u) = (f (u1), . . . , f (uL))T . Then, the composite
collocation problem can be written as

CF(u) = b. (6)

with

CF(u) = (I − Δt(IL ⊗ Q)F − E ⊗ H) (u),

where the matrix E ∈ R
L×L just has ones on the first subdi-

agonal and zeros elsewhere. If u ∈ R
N , we need to replace

H by H ⊗ IN .
SDC can be used to solve the composite collocation prob-

lemby forward substitution in a sequential way,whichmeans
to solve one time-step after each other using the previous
solution as initial value of the current time-step. The parallel-
in-time integrator PFASST, on the other hand solves the
composite collocation problem by calculating on all time-
steps simultaneously and is therefore an attractive alternative.
The first step from SDC towards PFASST is the introduction
of multiple levels, which are representations of the problem
with different accuracies in space and time. In order to sim-
plify the notation we focus on a two-level scheme consisting
of a fine and a coarse level. Coarsening can be achieved for
example by reducing the resolution in space, by decreasing
the number of quadrature nodes on each interval or by solv-
ing implicit systems less accurately. Especially a coarsening
through the reduction of quadrature points does not seem to
be worthwhile for our idea to parallize the belonging calcu-
lations, since there would no longer be a full employment
regarding the calculations on the coarse grid, but instead
individual processors would have to communicate larger
amounts of data. For this work, we only consider coarsening

123

 12 Page 4 of 12 R. Schöbel, R. Speck

in space, i.e., by using a restriction operator R on a vector
u ∈ R

N we obtain a new vector ũ ∈ R
Ñ . Vice versa, the

interpolation operator T is used to interpolate values from
ũ to u. Operators, vectors and numbers on the coarse level
will be denoted by a tilde to avoid further index cluttering.
Thus, the composite collocation operator on the coarse-level
is given by C̃F . While CF is defined on R

LMN , C̃F acts
on R

LMÑ with Ñ ≤ N , but as before we will neglect the
space dimension in the following notation. The extension of
the spatial transfer operators to the full space–time domain
is given by R = ILM ⊗ R and T = ILM ⊗ T .

The main goal of the introduction of a coarse level is to
move the serial part of the computation to this hopefully
cheaper level, while being able to run the expensive part in
parallel. For that, we define two preconditioners: a serial one
with a lower subdiagonal for the coarse level and a parallel,
block-diagonal one for the fine level. The serial precondi-
tionier for the coarse level is defined by

P̃F =

⎛
⎜⎜⎜⎜⎝

P̃sdc
f

−H̃ P̃sdc
f

. . .
. . .

−H̃ P̃sdc
f

⎞
⎟⎟⎟⎟⎠ ,

or, in a more compact way, by

P̃F(ũ) =
(
Ĩ − Δt(IL ⊗ Q̃Δ)F̃ − E ⊗ H̃

)
(ũ).

Inverting this corresponds to a single inner iteration of SDC
(a “sweep”) on step 1, then sending forward the result to step
2, an SDC sweep there and so on. The parallel preconditioner
on the fine level then simply reads

PF(u) = (I − Δt(IL ⊗ QΔ)F)(u).

Applying PF on the fine level leads to L decoupled SDC
sweeps, which can be run in parallel.

For PFASST, these two preconditioners and the levels
they work on are coupled using a full approximation scheme
(FAS) known from nonlinear multigrid theory [25]. Follow-
ing [1] one iteration of PFASST can then be formulated in
four steps:

1. the computation of the FAS correction τ k , including the
restriction of the fine value to the coarse level

τ k = C̃F(Ruk) − RCF(uk),

2. the coarse sweep on the modified composite collocation
problem on the coarse level

P̃F(ũk+1) = (P̃F − C̃F)(ũk) + b̃ + τ k, (7)

coarse
sweep

fine
sweep

coarse
comm.

fine
comm.

P0
t0 P1

t1 P2
t2 P3

t3 t4

co
m
pu

ta
ti
on

ti
m
e

pr
ed

ic
to
r

Fig. 1 Schematic view of PFASST on four processors. The figure was
created with pfasst-tikz [14]

3. the coarse grid correction applied to the fine level value

uk+
1
2 = uk + T(ũk+1 − Ruk), (8)

4. the fine sweep on the composite collocation problem on
the fine level

PF(uk+1) = (PF − CF)(uk+
1
2) + b. (9)

In Fig. 1, we see a schematic representation of the
described steps. The time-step parallel procedure, which we
describe here is also the same for all PFASST versions, that
we will introduce later. It is common to use as many proces-
sors as time-steps: In the given illustration four processors
work on four time-steps. Therefore the temporal domain is
divided into four intervals, which are assigned to four proces-
sors P0, . . . , P3. Every processor performs SDC sweeps on
its assigned interval on alternating levels. The big red blocks
represent fine sweeps, given by Eq. (9), and the small blue
blocks coarse sweeps, given by Eq. (7).

The coarse sweep over all intervals is a serial process:
after a processor finished its coarse sweeps, it sends forward
its results to the next processor, which takes this result as an
initial value for its own coarse sweeps. We see the commu-
nication in the picture represented by small arrows, which
connect the coarse sweeps of each interval. In (7), the need
for communication with a neighboring process is obvious,
because P̃F is not a (block-) diagonal matrix, but has entries
on its lower block-diagonal. PF on the other hand is block-
diagonal, which means that the processors can calculate on
the fine level in parallel.We see in (9) that there is only a con-
nection to previous time-steps through the right-hand side,
where we gather values from the previous time-step and iter-
ation but not from the current iteration. The picture shows
this connection by a fine communication, which forwards
data from each fine sweep to the following fine sweep of
the right neighbor. The fine and coarse calculations on every

123

PFASST-ER: combining the parallel full approximation scheme in space and time with… Page 5 of 12 12

processor are connected through the FAS corrections, which
in our formula are part of the coarse sweep.

2.3 PFASST-Newton

For each coarse and each fine sweep within each PFASST
iteration, System (7) and System (9), respectively, need to
be solved. If f is a nonlinear function these systems are
nonlinear aswell. The obvious and traditionalway to proceed
in this case is to linearize the problem locally (i.e. for each
time-step, at each quadrature node) using Newton’s method.
This way, PFASST is the outer solver with an inner Newton
iteration. For triangularQΔ, themth equation on the lth time-
step on the coarse level reads

(1 − Δt q̃Δ
l,m f̃)(ũk+1

l,m) = ũk+1
l,0 + Δt

m−1∑
n=1

q̃Δ
l,n f̃ (ũ

k+1
l,n)

+ c̃(ũk)l,m,

where ũk+1
0,0 = ũ0,0 and c̃(ũk)l,m is the mth entry the lth

block of c̃(ũk) := (P̃F − C̃F)(ũk) + τ k . This term gathers
all values of the previous iteration. The first summand of
the right-hand side of the coarse level equation corresponds
to b̃ and H̃, while the following sum comes from the lower
triangular structure of Q̃Δ.

For time-step l these equations can be solved one by one
using Newton iterations and forward substitution. This is
inherently serial, because the solution on the mth quadrature
node depends on the solution at all previous nodes through
the sum. Thus, while running parallel across the steps, each
solution of the local collocation problem is found in serial.
In the next section, we will present a novel way of applying
Newton’s method, which allows one to parallelize this part
across the collocation nodes, joining parallelization across
the step with parallelization across the method.

3 PFASST-ER

From the perspective of a single time-step [tl , tl+1] or pro-
cessor Pl , Eq. (7) on the coarse level for this step reads

P̃sdc
f (ũk+1

l) − ũk+1
l,0 = (P̃sdc

f − C̃coll
f)(ũkl) + τ kl ,

where τ kl is the lth component of τ k , belonging to the interval
[tl , tl+1]. Note that the serial dependency is given by the term
ũk+1
l,0 , so that it does not depend on the solution ũk+1

l of this
equation and can thus be considered as part of a given right-
hand side. On the fine level, this is even simpler, because
there we have to solve

Psdc
f (uk+1

l) = (Psdc
f − Ccoll

f)(u
k+ 1

2
l) + u

k+ 1
2

l,0 ,

where the u
k+ 1

2
l,0 -term is independent of the current iteration

(which, of course, leads to the parallelism on the fine level).
As we have seen above, the typical strategy would be to

solve these systems line by line, node by node, using for-
ward substitution and previous PFASST iterates as initial
guesses. An alternative approach has been presented in [19],
where each SDC iteration can be parallelized across the
nodes. While this is trivial for linear problems, nonlinear
ones require the linearization of the full equations, not node-
wise as before. For the fine sweep, let

Gsdc
f (v) := Psdc

f (v) − (Psdc
f − Ccoll

f)(u
k+ 1

2
l) − u

k+ 1
2

l,0

then a Newton step for Gsdc
f (v) = 0 is given by

∇Gsdc
f (v j)e j = −Gsdc

f (v j),

v j+1 = v j + e j ,

for Jacobian matrix ∇Gsdc
f (v j) of Gsdc

f evaluated at v j . We
have

∇Gsdc
f (v j) = ∇Psdc

f (v j)

= I − ΔtQΔ∇ f (v j)

for Jacobian matrix ∇ f (v j) of f evaluated at v j which in
turn is given by

∇ f (v j) = diag(f ′(v j
1), . . . , f ′(v j

M))T .

There is still no parallelism to exploit, but when we replace
the full Jacobian matrix ∇ f (v j) by the approximation
f ′(vl,0)IM , which is the derivative of f at the initial value
for the current time-step, we can use

∇Gsdc
f (v j) ≈ ∇GΔ-QN

f (vl,0) := I − f ′(vl,0)ΔtQΔ

to establish a Quasi-Newton iteration as

∇GΔ-QN
f (vl,0)e j = −Gsdc

f (v j),

v j+1 = v j + e j .

This decouples the evaluation of the Jacobianmatrix from the
current quadrature nodes andnowQΔ canbe diagonalized, so
that the inversion of∇GΔ-QN

f (vl,0) can be parallelized across
the nodes. Note that there are other options for approximating
the full Jacobian matrix. Most notably, in [9] the mean over
all Jacobianmatrices is used (there across the time-steps).We
did not see any impact on the convergence when following
this strategy, most likely because the number of quadrature
nodes is typically rather low. The advantage of using the

123

 12 Page 6 of 12 R. Schöbel, R. Speck

initial value is that it reduces the number of evaluations of the
Jacobian matrix, which also includes communication time.

Provided that QΔ is diagonalizable, we can decompose
it by QΔ = VΔ�ΔV

−1
Δ , where �Δ = diag((QΔ)i i) con-

tains the eigenvalues (QΔ)i i ∈ R of QΔ and V contains its
eigenvectors.

Using the given diagonalization the algorithm reads:

1. replace r j = −Gsdc
f (v j)by r̄ j = −V−1

Δ Gsdc
f (v j) (serial),

2. solve
(
I − f ′(vl,0)Δt�Δ

)
ē j = r̄ j (parallel in M),

3. replace ē j by e j = VΔ ē j (serial),
4. set v j+1 = v j + e j (parallel in M).

This can be iterated until a certain threshold is reached and
then set uk+1

l = v J to obtain the solution of the equation
for the fine sweep. On the coarse level, the procedure is very
similar,with a slightly different definition of G̃sdc

f̃
(ṽ). In prac-

tice, choosing only a single Newton iteration (i.e. J = 1) is
sufficient, because this is only the inner solver for an outer
PFASST iteration. In all cases we have studied so far, using
more inner iterations does not lead to a faster overall method.

This linearization and diagonalization strategy immedi-
ately suggests a second approach: instead of using QΔ for
the preconditioner, we can use the original quadrature matrix
Q directly. The intention of usingQΔ in the first place was to
obtain a preconditioner which allowed inversion using for-
ward substitutions. Now, with diagonalization in place, this
is no longer necessary. Instead, we can use

Pcoll
f := Ccoll

f

and thus

Gcoll
f (v) := Ccoll

f (v) − u
k+ 1

2
l,0 .

Note that this is just the lth block of the original composite
collocation problem. Following the same ideas as before, we
end up with

∇Gcoll
f (v j) ≈ ∇GQN

f (vl,0) := I − f ′(vl,0)ΔtQ,

which can be diagonalized using Q = V�V−1, where � is
a diagonal matrix with eigenvalues λi (Q) ∈ C. The same
idea can be applied to the coarse level sweep, of course. As
a result, the original nonlinear SDC sweeps within PFASST
are now replaced by Quasi-Newton iterations which can be
done parallel across the nodes. We note that using simplified
or Quasi-Newton methods for solving implicit Runge-Kutta
schemes is a standard approach, as e.g. [26] shows.We further
refer to [19] for more details on the idea of parallel SDC
sweeps with Q and QΔ.

The question now is, how much the approximation of
the Jacobians affects the convergence and runtime of the
method and how all this compares to standard PFASST iter-
ations. It is well known that for suitable right-hand sides
and initial guesses the standard, unmodified Newton method
converges quadratically while the Quasi-Newton method as
well as SDC show linear convergence, see e.g. [11,13,24].
We will examine the impact of these approaches in the fol-
lowing section along the lines of two numerical examples.
A more rigorous mathematical analysis is currently ongoing
work, as it can be embedded into a larger convergence theory
for PFASST with inner Newton-type solvers.

4 Numerical results

We apply PFASST and PFASST-ER to two different, rather
challenging reaction-diffusion problems, starting with a
detailed analysis of the parallelization strategies for the
Allen–Cahn equation and highlighting differences to these
findings for the Gray-Scott equations.

4.1 Allen–Cahn equation

We study the two-dimensional Allen–Cahn equation, which
is given by

ut = Δu + 1

ε2
u(1 − u) (10)

on the spatial domain [−0.5, 0.5]2 and with initial condition

u0 = tanh

(
R0 − (x2 + y2)√

2ε

)
,

and periodic boundary conditions. We use simple second-
order finite differences for discretization in space and take
256 elements in each dimension on the fine level and 128
on the coarse one. We furthermore use M = 4 Gauß-Radau
nodes, set ε = 0.04, Δt = 0.001 < ε2 and stop the simula-
tion after 24 time-steps at T = 0.024. The initial condition
describes a circle with a radius R0 = 0.25, see e.g. [28].

Note that since our focus is on the temporal parallelization,
the temporal resolution was chosen to be quite high in con-
trast to the spatial resolution. Errors in space and time are not
balanced here (and in the following example), with the spatial
error being much higher. This has been done deliberately to
avoid higher computational costs. By increasing the accuracy
in space, we would increase the amount of large paralleliz-
able computations in relation to communication. This would
in turn improve the overall parallel efficiency, which would
in the end lead to even better scaling results. However, when
using parallelization in space, all processors have very few

123

PFASST-ER: combining the parallel full approximation scheme in space and time with… Page 7 of 12 12

SL ML P2 P4 P8 P12 P24

100

1,000

algorithm

nu
m
be

r
of

lin
ea
r
so
lv
es

PFASST: N iter
PFASST: 1 iter
PFASST-ER: QΔ

PFASST-ER: Q

Fig. 2 Number of linear solves for the Allen–Cahn example, all meth-
ods run serial on the nodes

degrees-of-freedom anyway, so our results may even reflect
a “real” situation better.

The results we present in the following were computed
with pySDC [20,21] on the supercomputer JURECA [12].
We run a serial single-level simulation using SDC (“SL” in
the plots), a serial multi-level simulation using multi-level
SDC (“ML”, which is PFASST on one processor, see [23])
and parallel simulations with 2, 4, 8, 12 and 24 processors
(“P2” to “P24”), all until a given residual tolerance of 10−10

is reached.
If less processors than time-steps are used, the time

domain is split into blocks of parallel PFASST runs. These
are handled sequentially, using the solution of the previous
block as the initial data for the next one. For example, 6 pro-
cessors work on the first 6 time-steps until convergence and
the solution is used as new initial condition for the next block
of 6 time-steps. This is repeated until all 24 time-steps have
been completed.

In Fig. 2 we show the maximum number of linear solves
which were performed by the slowest processor (i.e. last
processor in time) for different versions of the solvers, aggre-
gated over all its time-steps and quadrature nodes, over all
outer and inner iterations.

Here, two versions of the original PFASST algorithm are
run: The first one performs exactly one inner Newton iter-
ation in every PFASST iteration; this version is labeled as
“PFASST: 1 iter”. In contrast, “PFASST: N iter” performs as
many inner Newton iterations required so that the residual of
the nonlinear inner problem is less than 10−11. Both PFASST
versions use the quadrature matrix QLU

Δ from Eq. (5) inside
the preconditioner. For PFASST-ER we also show two vari-
ants: The PFASST-ER algorithm, which uses the original Q
inside the preconditioner is labeled as “PFASST-ER: Q” and
the one which uses QLU

Δ is labeled as “PFASST-ER: QΔ”.
Solving the innermost linear systems is done using GMRES
with a tolerance of 10−12 in all cases.

SL ML P2 P4 P8 P12 P24

50

100

150

200

250
300

algorithm

ru
nt
im

e
(s
ec
.)

PFASST: N iter
PFASST: 1 iter
PFASST-ER: QΔ

PFASST-ER: Q

Fig. 3 Time to solution for Allen–Cahnwith parallelization only across
time-steps

We can see that performing more than one inner Newton
iteration (“PFASST: N iter” vs. “PFASST: 1 iter”) does not
improve the convergence of the overall algorithm. Although
it is possible that by increasing the number of inner Newton
iterations the number of outer PFASST iterations decreases,
the total effort, which can be measured by the total number
of linear solves, increases due to a higher number of inner
Newton iterations.

Using the Quasi-Newton approach with the same precon-
ditioner instead of the classical Newton solver (“PFASST-
ER: QΔ” vs. “PFASST: 1 iter”) shows little effect on the total
iteration numbers, but using the original quadrature matrix
Q instead of QLU

Δ inside the preconditioner (“PFASST-ER:
Q” vs. “PFASST-ER: QΔ”) greatly reduces the number of
iterations.

However,without parallelizationone iterationofPFASST-
ER with Q is in general more expensive than one iteration
of the other algorithms, because it requires the solution of a
full system via diagonalization instead of stepping through a
triangular system via forward substitution.

In Fig. 3, we thus examine whether the lower number of
more expensive iterations actually pays off. The plot shows
results for the same setup as Fig. 2, but now we focus on the
runtime instead of the iteration numbers. We only consider
parallelization across the time-steps to compare the impact
of the algorithmic change first. We see that despite the fact
that the iterations are more expensive, PFASST-ER with Q
already in this example shows a lower runtime than the origi-
nal PFASSTmethod. This is also true when usingQΔ instead
of Q.

At this point, we have not yet considered the additional
direction of concurrency exposed by PFASST-ER. For that,
we next compare different distributions of up to 24 cores on
the 4 quadrature nodes and the 24 time-steps. All divisions
of 24 were tested with all possible distributions.

123

 12 Page 8 of 12 R. Schöbel, R. Speck

1 2 4 8

Cores for time-steps

1

2

4

C
or
es

fo
r
ti
m
e-
no

de
s

163.3

88.5s
92.2%

54.7s
74.6%

115.6s
70.6%

71.0s
57.5%

41.2s
49.5%

88.1s
46.4%

51.5s
39.6%

66.8s
30.5%

3 6 12 24

Cores for time-steps

1

2

4

C
or
es

fo
r
ti
m
e-
no

de
s

96.1s
56.6%

58.3s
46.7%

32.8s
41.5%

77.2s
35.2%

44.5s
30.6%

31.3s
21.7%

56.7s
24.0%

38.7s
17.6%

55.1s
12.3%

Fig. 4 Runtimes in seconds (first number) and efficiencies (second
number) with different distribution of cores using PFASST-ER with Q
for the Allen–Cahn equation

The two plots in Fig. 4 show different combinations of
cores used for step-parallelization (x-axis) and for node-
parallelization (y-axis) with PFASST-ER andQ.Multiplying
the numbers on both axes gives the total number of cores
used for this simulation. This is also the reason why there are
two plots, because not all combinations are actually possible
or meaningful. Within each colored block the total runtime
(in seconds, first number) and parallel efficiencies (second
number) for this setup are given. We can see that using all
available cores for parallelization across the step is by far not
the most efficient choice. In turn, more than 4 cores cannot
be used for parallelization across the nodes, although 4 gives
the best speedup. Indeed, the best combination for this prob-
lem is to maximize node-parallelization first and then add
step-parallelization (31.3 seconds with 4 cores on the nodes
and 6 on the steps, lower picture). This is about 1.8 times
faster than using 24 cores for the steps alone and more than
5 times faster than the serial PFASST-ER run.

Although using Q instead of QΔ in PFASST-ER is faster
for this example, it is quite revealing to repeat the simulations
usingQΔ. These results are shown in Fig. 5 and it is obvious
that using as many cores as possible for the parallelization

across the nodes now is not the optimal strategy. Here, using
2 cores on the nodes and 12 on the steps is the most effi-
cient combination, albeit still significantly slower than using
PFASST-ER with Q, even with the same combination. The
reason for this potentially surprising result is that solving the
innermost linear systems heavily depends on the structure of
these systems, in particularwhen using an iterative solver like
GMRES. Moreover, initial guesses are a crucial factor, too.
For PFASST-ER, we use the current solution at node zero of
the respective time-step as the initial guess. This is particu-
larly suitable for the closest first nodes, but potentially less so
for later ones. While both effects did not lead to significant
variations in the time spent for solving the linear systems
when usingQ, it does produce a severe load imbalance when
usingQΔ. More specifically, using 4 cores for the nodes and
only 1 for the time-steps, i.e. exploiting only parallelization
across the nodes, the first core takes about 118.2 seconds for
all linear system solves together at the first node, while the
last core takes about 194.6 seconds on the last node. There-
fore, using 2 cores on the nodes, which enables a better load
distribution is the ideal choice. One possibility would be that
core 1 deals with nodes 1 and 4 and core 2 with 2 and 3, but
because node 3 and 4 are very close to each other and the cor-
responding calculations are almost equally expensive also an
alternating distribution is an ideal choice. This is precisely
what has been done for Fig. 5, leading to the best speedup
with 2 cores on the nodes. For other examples, an optimal
distribution might be more difficult to find.

In Fig. 6 we now summarize the best results: PFASST
with one inner Newton iteration in comparison to PFASST-
ER using QΔ and 2 cores on the nodes and PFASST-ER
usingQwith 4 cores on the node. The plot shows the simula-
tion time for each variant based on the number of processors
used in total. We see that PFASST-ER is always much more
time efficient in doing the calculations than PFASST, with
another significant gain when using Q instead of QΔ. Now,
since PFASST-ER adds another direction of parallelization
compared to PFASST, we can not only increase parallel effi-
ciency as shown, but also extend the number of usable cores
to obtain a better time-to-solution. This has been done in
Fig. 7: taking 48 or 96 cores in total further reduces the com-
puting time for 24 time-steps. With PFASST-ER, the number
of resources that can be used for parallel-in-time integration
is no more limited by the number of time-steps, but can be
increased by the factor given by the number of quadrature
nodes.

4.2 Gray-Scott equations

The second examplewepresent here is theGray-Scott system
[16], which is given by

ut = DuΔu − 2uv + F(1 − u),

123

PFASST-ER: combining the parallel full approximation scheme in space and time with… Page 9 of 12 12

1 2 4 8

Cores for time-steps

1

2

4

C
or
es

fo
r
ti
m
e-
no

de
s

226.4

120.0s
94.4%

221.8s
25.5%

115.8s
97.8%

80.1s
70.6%

162.6s
17.4%

93.2s
60.8%

61.3s
46.2%

71.7s
39.5%

3 6 12 24

Cores for time-steps

1

2

4

C
or
es

fo
r
ti
m
e-
no

de
s

112.6s
67.0%

68.9s
54.8%

133.5s
14.1%

80.6s
46.8%

50.6s
37.3%

111.0s
8.5%

59.2s
31.9%

45.6s
20.7%

50.8s
18.6%

Fig. 5 Runtimes in seconds (first number) and efficiencies (second
number) with different distribution of cores using PFASST-ER with
QΔ for the Allen–Cahn equation

P4 P8 P12 P24

30

40

50

60

70
80
90
100

total number of cores

ru
nt
im

e
(s
ec
.)

PFASST: 1 iter
PFASST-ER: QΔ, 2 cores
PFASST-ER: Q, 4 cores

Fig. 6 Runtimes for the three best variants, Allen–Cahn example

vt = DvΔv + 2uv − (F + K)v,

on the spatial domain [0, 1] × [0, 1], with periodic bound-
ary conditions. As initial condition we choose a circle with
radius 0.05 centred in the spatial domain, where u = 0.5 and
v = 0.25 on the inside, and u = 1.0 and v = 0 outside of

P4 P8 P12 P24 P48 P96

20

30

40

50

60
70
80
90
100

total number of cores

ru
nt
im

e
(s
ec
.)

PFASST: 1 iter
PFASST-ER QΔ, 2 cores
PFASST-ER: Q, 4 cores

Fig. 7 Runtimes for different number of processors, Allen–Cahn exam-
ple

SL ML P2 P3 P4 P6 P8 P12 P24

250

500

1,000

algorithm

nu
m
be

r
of

lin
ea
r
so
lv
es

PFASST: 1 iter
PFASST-ER: QΔ

PFASST-ER: Q

Fig. 8 Number of linear solves for the Gray-Scott example, all methods
run serial on the nodes

this circle. We use Du = 10−4, Dv = 10−5 and set a feed
rate of F = 0.0367 and a kill rate of K = 0.0649. This
leads after some time to a process similar to cellular division
and is known as “mitosis”. We discretize the spatial domain
with 128 points in each dimension on the fine level and with
64 on the coarse one, using standard finite differences. We
discretize every time-step of size Δt = 1 with 4 quadrature
nodes and run the simulation again for 24 time-steps.

The results are similar to the ones for the Allen–Cahn
equation in the previous section. We will omit the case of
PFASST with more than one inner Newton iteration, though.

We start again by looking at the total number of linear
solves the different algorithms need to perform. Figure 8
shows the number of linear solves for the methods, which
run until a residual tolerance of 10−12 is reached. The results
look quite similar to the ones for the previous example, with
one critical difference: The difference between theQ-variant
of PFASST-ER and the other algorithms becomes smaller
more rapidly the more parallel time-steps are used. There

123

 12 Page 10 of 12 R. Schöbel, R. Speck

SL ML P2 P3 P4 P6 P8 P12 P24

10

20

30

40

50
60

algorithm

ru
nt
im

e
(s
ec
.)

PFASST: 1 iter
PFASST-ER: QΔ

PFASST-ER: Q

Fig. 9 Time to solution for Gray-Scott with parallelization only across
time-steps

is no obvious explanation (at least, obvious to us) for this
behavior, though. The more time steps are approximated
simultaneously, the less suitable u0 works as initial value for
more distant time-steps. Although the full Newton and the
Quasi-Newton methods differ by an order of convergence
in theory, in our scenario this seems relevant only for good
initial values. One can expect that the runtime will increase
when using PFASST-ER with Q, while it stayed about the
same in the case of the Allen–Cahn example.

This is precisely what we can see in Fig. 9. The more par-
allel time-steps are run, the less efficient PFASST-ER with
Q in this variant becomes. Already at 3 parallel steps, it is as
costly as the original PFASST version, at least when paral-
lelization across the nodes is not considered.

Now, adding node-parallelization, the findings are again
similar to the ones in the previous section: Figure 10 shows
that PFASST-ER with Q is still more efficient than using
PFASST. In particular, usingmore cores on the nodes is better
and the best combination is again 4 cores on the nodes and 6
on the steps. Again, this changes when considering PFASST-
ER with QΔ as in Fig. 11, where the ideal setup uses only
2 cores on the nodes, but 12 on the steps. This is again due
to load imbalances of the innermost linear solves. However,
note the key difference to the previous results: The fastest run
of theQΔ-variant is now faster than the one of theQ-variant.

In Fig. 12 we now give an overview of the best results: If
we use parallelism across the nodes in a suitable way, both
PFASST-ER versions are more efficient based on the simu-
lation time than the classical PFASST algorithm. Both can
be used to extend the scaling capabilities beyond the number
of time-steps, and both scale rather well in this regime. Note,
however, that the QΔ-variant can here only leverage 2 × 24
cores. It is then faster than theQ-variant with twice as many
cores.

1 2 4 8

Cores for time-steps

1

2

4

C
or
es

fo
r
ti
m
e-
no

de
s

49.1

26.0s
94.6%

18.5s
66.3%

33.1s
74.2%

18.7s
65.7%

14.4s
42.5%

24.9s
49.4%

15.3s
40.0%

21.0s
29.2%

3 6 12 24

Cores for time-steps

1

2

4

C
or
es

fo
r
ti
m
e-
no

de
s

28.0s
58.4%

16.6s
49.3%

12.3s
33.2%

22.1s
37.0%

13.5s
30.3%

10.8s
19.0%

19.2s
21.3%

13.0s
15.7%

12.5s
16.3%

Fig. 10 Runtimes in seconds (first number) and efficiencies (second
number) with different distribution of cores using PFASST-ER with Q
for the Gray-Scott equations

5 Conclusion and outlook

Today’s supercomputers are designedwith an ever increasing
number of processors. Therefore we need our software and
the underlying numerical algorithms to handle this increas-
ing degree of parallelism. Time-parallel integrators are one
promising research direction, with quite a number of differ-
ent approaches. Some approaches parallelize each individual
time-step and others act on multiple time-steps simultane-
ously. In this paper we have introduced a solver that works in
parallel across the method as well as across the steps. More
precisely,we combine node-parallel spectral deferred correc-
tions with the parallel full approximation scheme in space
and time. While PFASST allows one to compute multiple
time-steps simultaneously and target large-scale parallelism
in time, the new version called PFASST-ER presented here
extends this idea with an efficient small-scale parallelization
for every single time-step itself. The scaling studies show that
a combination of both concepts seems to be themost efficient
way to solve time-dependent PDEs. Here we tested two dif-
ferent preconditioners: ones using the traditional, triangular

123

PFASST-ER: combining the parallel full approximation scheme in space and time with… Page 11 of 12 12

1 2 4 8

Cores for time-steps

1

2

4

C
or
es

fo
r
ti
m
e-
no

de
s

47.5

27.1s
87.9%

30.6s
38.8%

27.3s
87.1%

15.8s
75.1%

21.3s
27.9%

17.8s
66.6%

11.1s
53.5%

12.8s
46.3%

3 6 12 24
Cores for time-steps

1

2

4

C
or
es

fo
r
ti
m
e-
no

de
s

21.2s
74.6%

12.9s
61.3%

17.7s
22.4%

14.3s
55.4%

9.2s
43.2%

15.5s
12.8%

11.1s
35.8%

8.2s
24.2%

10.5s
18.9%

Fig. 11 Runtimes in seconds (first number) and efficiencies (second
number) with different distribution of cores using PFASST-ER with
QΔ for the Gray-Scott equations

P4 P8 P12 P24 P48 P96

8

12

16

20

24

total number of cores

ru
nt
im

e
(s
ec
.)

PFASST: 1 iter
PFASST-ER QΔ, 2 cores
PFASST-ER: Q, 4 cores

Fig. 12 Runtimes for the three best variants, Gray-Scott example

quadrature matrix QΔ, generated by a LU-decomposition
and one using the original matrix Q. Both can be diagonal-
ized and used as parallel-across-the-node preconditioners.
For the QΔ-preconditioner, we saw load imbalances when
using an inner iterative linear solver, but by grouping nodes
we still can speed up the simulation beyond the number

of parallel time-steps. For the Q-preconditioner, the over-
all number of iterations was lower and time-to-solution was
faster. Adding node-parallelization, parallel efficiency can be
increased and speedup extended when compared to PFASST.
Both PFASST-ER versions lead in the end to better scaling
results than the classical PFASST algorithm. PFASST-ER Q
especially offers an almost equal distribution of work for iter-
ative linear solvers with respect to the individual quadrature
nodes of a time-step. This advantage makes this algorithm
particularly flexible and can be used for any number of
quadrature points.

PFASST-ER is particularly favorable if an increase in par-
allelism across the stepswould lead to a severe increase in the
number of iterations. This could be due to e.g. the type of the
equation or the coarsening strategy. During our experiments
we saw that it is not clear a prioriwhich combination of node-
and step-parallelization is the most efficient one. This could
lead tomany, potentially irrelevant runs to find the sweet spot.
Here, a performance model and a suitable convergence the-
ory are needed to at least narrow down the relevant options.
This has to be accompanied bymore numerical tests, relating
e.g. model parameters with load imbalances, to identify the
limits of this approach.

Acknowledgements The authors thankfully acknowledge the financial
support by the German Federal Ministry of Education and Research
through the ParaPhase project within the framework “IKT 2020 -
Forschung für Innovationen” (Project Number 01IH15005A).

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Bolten, M., Moser, D., Speck, R.: A multigrid perspective on the
parallel full approximation scheme in space and time. Numer. Lin-
ear Algebra Appl. 24(6), e2110 (2017). https://doi.org/10.1002/
nla.2110

2. Bolten, M., Moser, D., Speck, R.: Asymptotic convergence of
the parallel full approximation scheme in space and time for lin-
ear problems. Numer. Linear Algebra Appl. 25(6), e2208 (2018).
https://doi.org/10.1002/nla.2208

3. Burrage, K.: Parallel methods for ODEs. Adv. Comput. Math. 7,
1–3 (1997)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/nla.2110
https://doi.org/10.1002/nla.2110
https://doi.org/10.1002/nla.2208

 12 Page 12 of 12 R. Schöbel, R. Speck

4. Christlieb, A.J., Macdonald, C.B., Ong, B.W.: Parallel high-order
integrators. SIAM J. Sci. Comput. 32(2), 818–835 (2010)

5. Clarke, A.T., Davies, C.J., Ruprecht, D., Tobias, S.M.: Parallel-in-
time integration of kinematic dynamos (2019). arXiv:1902.00387
[physics.comp-ph]

6. Emmett, M., Minion, M.L.: Toward an efficient parallel in time
method for partial differential equations. Commun. Appl. Math.
Comput. Sci. 7, 105–132 (2012)

7. Falgout, R.D., Friedhoff, S., Kolev, T.V., MacLachlan, S.P.,
Schroder, J.B., Vandewalle, S.:Multigridmethodswith space–time
concurrency. Comput. Vis. Sci. 18(4–5), 123–143 (2017)

8. Gander, M.J.: 50 years of time parallel time integration. In: Multi-
ple Shooting and Time Domain Decomposition. Springer (2015).
https://doi.org/10.1007/978-3-319-23321-5_3

9. Gander, M.J., Halpern, L., Ryan, J., Tran, T.T.B.: A direct solver
for time parallelization. In: Dickopf, T., Gander, M.J., Halpern, L.,
Krause, R., Pavarino, L.F. (Eds) Domain Decomposition Methods
in Science and Engineering XXII, pp. 491–499. Springer (2016).
https://doi.org/10.1007/978-3-319-18827-0_50

10. Huang, J., Jia, J., Minion, M.: Accelerating the convergence of
spectral deferred correction methods. J. Comput. Phys. 214(2),
633–656 (2006)

11. Jackson, K .R., Kværnø, A., Nørsett, S .P.: The use of butcher series
in the analysis of newton-like iterations in Runge–Kutta formulas.
Appl. Numer. Math. 15(3), 341–356 (1994)

12. Jülich Supercomputing Centre. JURECA: General-purpose super-
computer at Jülich Supercomputing Centre. J. Large-Scale Res.
Facil. 2(A62) (2016). https://doi.org/10.17815/jlsrf-2-121

13. Kelley, C.T.: IterativeMethods for Linear andNonlinear Equations.
Number 16 in Frontiers in Applied Mathematics. SIAM (1995)

14. Koehler, F.: PFASST TikZ. https://github.com/Parallel-in-Time/
pfasst-tikz (2015)

15. Lions, J.-L., Maday, Y., Turinici, G.: A “parareal” in time
discretization of PDE’s. Comptes Rendus de l’Académie des
Sciences—Series I: Mathematics. https://doi.org/10.1016/S0764-
4442(00)01793-6

16. Pearson, J.E.: Complex patterns in a simple system. Science
261(5118), 189–192 (1993)

17. Ruprecht, D., Speck, R.: Spectral deferred corrections with fast-
wave slow-wave splitting. SIAM J. Sci. Comput. 38(4), A2535–
A2557 (2016)

18. Ruprecht, D., Speck, R., Emmett, M., Bolten, M., Krause,
R.: Poster: extreme-scale space-time parallelism. In: Proceed-
ings of the 2013 Conference on High Performance Computing
Networking, Storage and Analysis Companion, SC ’13 Com-
panion (2013). http://sc13.supercomputing.org/sites/default/files/
PostersArchive/tech_posters/post148s2-file3.pdf

19. Speck, R.: Parallelizing spectral deferred corrections across the
method. Comput. Vis. Sci. 19(3–4), 75–83 (2018). https://doi.org/
10.1007/s00791-018-0298-x

20. Speck, R.: Algorithm 997: pySDC-prototyping spectral deferred
corrections. ACM Trans. Math. Softw. (2019). https://doi.org/10.
1145/3310410

21. Speck, R.: Website for pySDC (2019). https://parallel-in-time.org/
pySDC/. Accessed 27 November 2019

22. Speck, R., Ruprecht, D., Krause, R., Emmett, M., Minion, M.,
Winkel, M., Gibbon, P.: A massively space–time parallel N-body
solver. In: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC
’12, pp. 92:1–92:11. IEEE Computer Society Press, Los Alami-
tos, CA,USA (2012). ISBN978-1-4673-0804-5. http://dl.acm.org/
citation.cfm?id=2388996.2389121. event-place: Salt Lake City,
Utah

23. Speck, R., Ruprecht, D., Emmett, M., Minion, M.L., Bolten, M.,
Krause, R.: A multi-level spectral deferred correction method.
BIT Numer. Math. 55, 843–867 (2015). https://doi.org/10.1007/
s10543-014-0517-x

24. Tang, T., Xie, H., Yin, X.: High-order convergence of spectral
deferred correction methods on general quadrature nodes. J. Sci.
Comput. 56(1), 1–13 (2013)

25. Trottenberg, U., Oosterlee, C., Schuller, A.: Multigrid. Academic
Press, London (2000)

26. Wanner, G., Hairer, E.: Solving Ordinary Differential Equations II.
Springer, Berlin (1996)

27. Weiser, M.: Faster SDC convergence on non-equidistant grids by
DIRK sweeps. BIT Numer. Math. 55(4), 1219–1241 (2014)

28. Zhang, J., Du, Q.: Numerical studies of discrete approximations
to the Allen–Cahn equation in the sharp interface limit. SIAM J.
Sci. Comput. 31(4), 3042–3063 (2009). https://doi.org/10.1137/
080738398.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1902.00387
https://doi.org/10.1007/978-3-319-23321-5_3
https://doi.org/10.1007/978-3-319-18827-0_50
https://doi.org/10.17815/jlsrf-2-121
https://github.com/Parallel-in-Time/pfasst-tikz
https://github.com/Parallel-in-Time/pfasst-tikz
https://doi.org/10.1016/S0764-4442(00)01793-6
https://doi.org/10.1016/S0764-4442(00)01793-6
http://sc13.supercomputing.org/sites/default/files/PostersArchive/tech_posters/post148s2-file3.pdf
http://sc13.supercomputing.org/sites/default/files/PostersArchive/tech_posters/post148s2-file3.pdf
https://doi.org/10.1007/s00791-018-0298-x
https://doi.org/10.1007/s00791-018-0298-x
https://doi.org/10.1145/3310410
https://doi.org/10.1145/3310410
https://parallel-in-time.org/pySDC/
https://parallel-in-time.org/pySDC/
http://dl.acm.org/citation.cfm?id=2388996.2389121
http://dl.acm.org/citation.cfm?id=2388996.2389121
https://doi.org/10.1007/s10543-014-0517-x
https://doi.org/10.1007/s10543-014-0517-x
https://doi.org/10.1137/080738398.
https://doi.org/10.1137/080738398.

	PFASST-ER: combining the parallel full approximation scheme in space and time with parallelization across the method
	Abstract
	1 Introduction
	2 Parallelization across the steps with PFASST
	2.1 Spectral deferred corrections
	2.2 Parallel full approximation scheme in space and time
	2.3 PFASST-Newton

	3 PFASST-ER
	4 Numerical results
	4.1 Allen–Cahn equation
	4.2 Gray-Scott equations

	5 Conclusion and outlook
	Acknowledgements
	References

