Hauptseite > Publikationsdatenbank > Unfolding recurrence by Green's functions for optimized reservoir computing > print |
001 | 885634 | ||
005 | 20240313103121.0 | ||
024 | 7 | _ | |a arXiv:2010.06247 |2 arXiv |
024 | 7 | _ | |a 2128/25903 |2 Handle |
024 | 7 | _ | |a altmetric:92331342 |2 altmetric |
037 | _ | _ | |a FZJ-2020-03975 |
100 | 1 | _ | |a Nestler, Sandra |0 P:(DE-Juel1)174585 |b 0 |u fzj |
245 | _ | _ | |a Unfolding recurrence by Green's functions for optimized reservoir computing |
260 | _ | _ | |c 2020 |
336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1602842442_17894 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
336 | 7 | _ | |a preprint |2 DRIVER |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
520 | _ | _ | |a Cortical networks are strongly recurrent, and neurons have intrinsic temporal dynamics. This sets them apart from deep feed-forward networks. Despite the tremendous progress in the application of feed-forward networks and their theoretical understanding, it remains unclear how the interplay of recurrence and non-linearities in recurrent cortical networks contributes to their function. The purpose of this work is to present a solvable recurrent network model that links to feed forward networks. By perturbative methods we transform the time-continuous, recurrent dynamics into an effective feed-forward structure of linear and non-linear temporal kernels. The resulting analytical expressions allow us to build optimal time-series classifiers from random reservoir networks. Firstly, this allows us to optimize not only the readout vectors, but also the input projection, demonstrating a strong potential performance gain. Secondly, the analysis exposes how the second order stimulus statistics is a crucial element that interacts with the non-linearity of the dynamics and boosts performance. |
536 | _ | _ | |a 574 - Theory, modelling and simulation (POF3-574) |0 G:(DE-HGF)POF3-574 |c POF3-574 |f POF III |x 0 |
536 | _ | _ | |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |0 G:(EU-Grant)945539 |c 945539 |x 1 |
536 | _ | _ | |0 G:(DE-82)EXS-SF-neuroIC002 |x 2 |c EXS-SF-neuroIC002 |a neuroIC002 - Recurrence and stochasticity for neuro-inspired computation (EXS-SF-neuroIC002) |
536 | _ | _ | |a Advanced Computing Architectures (aca_20190115) |0 G:(DE-Juel1)aca_20190115 |c aca_20190115 |f Advanced Computing Architectures |x 3 |
536 | _ | _ | |a RenormalizedFlows - Transparent Deep Learning with Renormalized Flows (BMBF-01IS19077A) |0 G:(DE-Juel-1)BMBF-01IS19077A |c BMBF-01IS19077A |x 4 |
536 | _ | _ | |a SDS005 - Towards an integrated data science of complex natural systems (PF-JARA-SDS005) |0 G:(DE-Juel-1)PF-JARA-SDS005 |c PF-JARA-SDS005 |x 5 |
536 | _ | _ | |0 G:(DE-Juel1)PHD-NO-GRANT-20170405 |x 6 |c PHD-NO-GRANT-20170405 |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405) |
588 | _ | _ | |a Dataset connected to arXivarXiv |
700 | 1 | _ | |a Keup, Christian |0 P:(DE-Juel1)171384 |b 1 |u fzj |
700 | 1 | _ | |a Dahmen, David |0 P:(DE-Juel1)156459 |b 2 |u fzj |
700 | 1 | _ | |a Gilson, Matthieu |0 P:(DE-Juel1)184621 |b 3 |u fzj |
700 | 1 | _ | |a Rauhut, Holger |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Helias, Moritz |0 P:(DE-Juel1)144806 |b 5 |e Corresponding author |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/885634/files/neurips_draft_rev1.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/885634/files/neurips_draft_rev1.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:885634 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)174585 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)171384 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)156459 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)184621 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)144806 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |2 G:(DE-HGF)POF3-500 |v Theory, modelling and simulation |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Theoretical Neuroscience |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 2 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a preprint |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|