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Statistical field theory captures collective non-equilibrium dynamics of neuronal networks, but it
does not address the inverse problem of searching the connectivity to implement a desired dynamics.
We here show for an analytically solvable network model that the effective action in statistical field
theory is identical to the rate function in large deviation theory; using field theoretical methods we
derive this rate function. It takes the form of a Kullback-Leibler divergence and enables data-driven
inference of model parameters and Bayesian prediction of time series.

PACS numbers:

Introduction.– Biological neuronal networks are sys-
tems with many degrees of freedom and intriguing prop-
erties: their units are coupled in a directed, non-
symmetric manner, so that they typically operate outside
thermodynamic equilibrium [1, 2]. Even more challeng-
ing is the question how this non-equilibrium dynamics is
used to perform information processing. A rigorous un-
derstanding is still deficient but imperatively needed to
shed light into their remarkable abilities of computation.

The primary method to study neuronal networks has
been mean-field theory [3–8]. Its field-theoretical basis
has been exposed only recently [9, 10] which promises
highly efficient schemes to study effects beyond the
mean–field approximation. However, to understand
the parallel and distributed information processing per-
formed by neuronal networks, the study of the forward
problem – from the microscopic parameters of the model
to its dynamics – is not sufficient. One additionally faces
the inverse problem of determining the parameters of the
model given a desired dynamics and thus function. For-
mally, one needs to link statistical physics with concepts
from information theory and statistical inference.

We here expose a tight relation between statistical field
theory of neuronal networks, large-deviation theory, in-
formation theory, and inference. To this end, we general-
ize the probabilistic view of large deviation theory, which
yields rigorous results for the leading order behavior in
the network size N [11, 12], to arbitrary single unit dy-
namics and transfer functions. We then show that the
central quantity of large deviation theory, the rate func-
tion, is identical to the effective action in statistical field
theory. Having rendered this comprehensive picture, a
third relation is found: Bayesian inference and prediction
are naturally formulated within this framework, span-
ning the arc to information processing. Concretely, we
discover a method of parameter inference from transient
data and perform Bayes-optimal prediction of the time-
dependent network activity.

Model.- We consider random networks of N nonlin-
early interacting units xi(t) driven by an external input
ξi(t). The dynamics of the units are governed by the
stochastic differential equation

ẋi(t) = −∇U(xi(t)) +
N

∑
j=1

Jijφ(xj(t)) + ξi(t). (1)

In the absence of recurrent and external inputs, the
units undergo an overdamped motion in a potential
U(x). The Jij are independent and identically Gaussian-
distributed random coupling weights with zero mean and
variance ⟨J2

ij⟩ = g2/N where the coupling strength g con-
trols the heterogeneity of the weights. The time-varying
external inputs ξi(t) are independent Gaussian white-
noise processes with zero mean and correlation functions
⟨ξi(t1)ξj(t2)⟩ = 2Dδijδ(t1 − t2). The model corresponds
to the one studied in [4] if the external input vanishes,
D = 0, the potential is quadratic, U(x) = 1

2
x2, and the

transfer function is sigmoidal, φ(x) = tanh(x); for D = 1

2
,

U(x) = − log(A2−x2), and φ(x) = x it corresponds to the
one in [11], which is inspired by the dynamical spin glass
model of [13].

Field theory.- The field-theoretical treatment of
Eq. (1) employs the Martin–Siggia–Rose–de Dominicis–
Janssen path integral formalism [14–17]. We denote the
expectation over paths across different realizations of the
noise ξ as

⟨⋅⟩
x∣J ≡ ⟨⟨⋅⟩x∣J,ξ⟩

ξ
= ∫ Dx ∫ Dx̃ ⋅ eS0(x,x̃)−x̃TJφ(x),

where ⟨⋅⟩
x∣J,ξ integrates over the unique solution of

Eq. (1) given one realization ξ of the noise (see Appendix
A). Here, S0(x, x̃) = x̃

T(ẋ + ∇U(x)) +Dx̃
T
x̃ is the ac-

tion of the uncoupled neurons. We use the shorthand

notation a
T
b = ∑N

i=1 ∫ T

0
dt ai(t)bi(t).

For large N , the system becomes self-averaging, a
property known from many disordered systems with large
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numbers of degrees of freedom: the collective behavior is
stereotypical, independent of the realization Jij . This

holds for observables of the form ∑N
i=1 ℓ(xi), where ℓ is

an arbitrary functional of a single unit’s trajectory. It is
therefore convenient to introduce the scaled cumulant–
generating functional

WN(ℓ) ∶= 1

N
ln ⟨⟨e∑N

i=1 ℓ(xi)⟩
x∣J
⟩
J

, (2)

where the prefactor 1/N makes sure that WN is an in-
tensive quantity, reminiscent of the bulk free energy [18].
In fact, we will show that the N -dependence vanishes in
the limit N →∞ because the system decouples.

Performing the average over J and in-
troducing the auxiliary field C(t1, t2) ∶=
g2N−1 ∑N

i=1 φ(xi(t1))φ(xi(t2)) as well as the con-
jugate field C̃, we can write WN as [9, 19]

WN(ℓ) = 1

N
ln ∫ DC ∫ DC̃ e

− N

g2
CTC̃+N Ωℓ(C,C̃)

, (3)

Ωℓ(C, C̃) ∶= ln ∫ Dx ∫ Dx̃ eS0(x,x̃)+ 1

2
x̃TCx̃+φTC̃φ+ℓ(x).

The effective action is defined as the Legendre transform
of WN(ℓ),

ΓN(µ) ∶= ∫ Dxµ(x) ℓµ(x) −WN(ℓµ), (4)

where ℓµ is determined implicitly by the condition µ =
W ′

N(ℓµ) and the derivative W ′
N(ℓ) has to be understood

as a generalized derivative, the coefficient of the lineariza-
tion akin to a Fréchet derivative [20].

Note that WN and ΓN are, respectively, generalizations
of a cumulant–generating functional and of the effective
action [21] because both map a functional (ℓ or µ) to the
reals. For the choice ℓ(x) = jTx, we recover the usual
cumulant–generating functional of the single unit’s tra-
jectory (see Appendix D) and the corresponding effective
action.

Rate function.- Self–averaging corresponds to a
sharply peaked distribution of an observable over real-
izations of J—because the distribution is very narrow,
the observable always attains the same value. However,
this can only hold for observables averaged over all units,
reminiscent of the central limit theorem. Therefore, it is
natural to restrict the observables to network–averaged
ones; formally, this can be achieved without loss of gen-
erality using the empirical measure

µ(y) ∶= 1

N

N

∑
i=1

δ(xi − y), (5)

since 1

N ∑N
i=1 ℓ(xi) = ∫ Dy µ(y)ℓ(y). Of particular inter-

est is the leading–order exponential behavior of the dis-
tribution of empirical measures P (µ) = ⟨⟨P (µ ∣x)⟩x∣J ⟩J

across realizations of J and ξ described by the rate func-
tion [see e.g. 22]

H(µ) ∶= − lim
N→∞

1

N
lnP (µ). (6)

For large N , the probability of an empirical measure that
does not correspond to the minimum H ′(µ̄) = 0 is expo-
nentially suppressed. Put differently, the system is self–
averaging and the statistics of any network–averaged ob-
servable can be obtained using µ̄.

Similar to field theory, it is convenient to introduce
the scaled cumulant–generating functional of the empiri-
cal measure. Because 1

N ∑N
i=1 ℓ(xi) = ∫ Dy µ(y)ℓ(y) holds

for an arbitrary functional ℓ(xi) of the single unit’s tra-
jectory xi, Eq. (2) has the form of the scaled cumulant–
generating functional for µ at finite N .

Using a saddle-point approximation for the integrals
over C and C̃ in Eq. (3) (see Appendix A), we get

W∞(ℓ) = − 1

g2
CT

ℓ C̃ℓ +Ωℓ(Cℓ, C̃ℓ). (7)

Both Cℓ and C̃ℓ are determined self-consistently by the
saddle-point equations Cℓ = g2 ∂C̃Ωℓ(C, C̃)∣Cℓ,C̃ℓ

and

C̃ℓ = g2 ∂CΩℓ(C, C̃)∣Cℓ,C̃ℓ
where ∂C denotes a partial

functional derivative.
From the scaled cumulant–generating functional,

Eq. (7), we obtain the rate function via a Legendre trans-
formation [23]: H(µ) = ∫ Dxµ(x)ℓµ(x) −W∞(ℓ) with
ℓµ implicitly defined by µ = W ′

∞(ℓµ). Comparing with
Eq. (4), we observe that the rate function is equivalent to
the effective action: H(µ) = limN→∞ ΓN(µ). The equa-
tion µ =W ′

∞(ℓµ) can be solved for ℓµ to obtain a closed
expression for the rate function viz. effective action (see
Appendix B)

H(µ) = ∫ Dxµ(x) ln µ(x)
⟨δ(ẋ +∇U(x) − η)⟩η , (8)

where η is a zero–mean Gaussian process with a correla-
tion function that is determined by µ(x),

Cη(t1, t2) =2Dδ(t1 − t2)
+ g2∫ Dxµ(x)φ(x(t1))φ(x(t2)). (9)

For D = 1

2
, U(x) = − log(A2 − x2), and φ(x) = x, Eq. (8)

can be shown to be a equivalent to the mathematically
rigorous result obtained in the seminal work by Ben
Arous and Guionnet (see Appendix C).

The rate function Eq. (8) takes the form of a Kullback-
Leibler divergence. Thus, it possesses a unique minimum
at

µ̄(x) = ⟨δ(ẋ +∇U(x) − η)⟩η , (10)

which corresponds to the well-known self-consistent
stochastic dynamics that is obtained in field theory
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The exposed link between the effective action defined
within statistical field theory and the rate function, cen-
tral to large deviation theory, opens the door to apply-
ing established field-theoretical techniques, such as the
loopwise expansion [21], to obtain systematic corrections
beyond the mean-field limit. Such sub–exponential cor-
rections to the rate function are important for small or
sparse networks with non–vanishing mean connectivity,
to explain correlated neuronal activity, and to study in-
formation processing in finite-size networks with realis-
tically limited resources. More generally, the link allows
the systematic derivation of results using field theory and
to subsequently prove them in a mathematically rigorous
manner within the large deviation framework.

Acknowledgments.– We are grateful to Olivier Faugeras
and Etienne Tanré for helpful discussions on LDT of neu-
ronal networks, to Anno Kurth for pointing us to the
Fréchet derivative and to Alexandre René, David Dah-
men, Kirsten Fischer, and Christian Keup for feedback
on an earlier version of the manuscript. This work was
partly supported by the Helmholtz young investigator’s
group VH-NG-1028, European Union Horizon 2020 grant
785907 (Human Brain Project SGA2).

Appendix

A. Scaled Cumulant Generating Functional

Here, we derive the scaled cumulant generating func-
tional and the saddle-point equations. The first steps of
the derivations are akin to the manipulations presented
in [9, 19], thus we keep the presentation concise. We
interpret the stochastic differential equations governing
the network dynamics in the Itô convention. Using the
Martin–Siggia–Rose–de Dominicis–Janssen path integral
formalism, the expectation ⟨⋅⟩

x∣J of some arbitrary func-

tional G(x) can be written as

⟨⟨G(x)⟩
x∣J,ξ⟩ξ = ∫ Dx ⟨δ(ẋ +∇U(x) + Jφ(x) + ξ)⟩ξG(x)

= ∫ Dx ∫ Dx̃ eS0(x,x̃)−x̃TJφ(x)G(x)
where we used the Fourier representation δ(x) =
1

2πi ∫ i∞
−i∞ ex̃xdx̃ in every timestep in the second step and

defined the action

S0(x, x̃) = x̃T(ẋ +∇U(x)) +Dx̃
T
x̃.

An additional average over realizations of the connectiv-

ity J
i.i.d.∼ N (0,N−1g2) only affects the term −x̃T

Jφ(x)
in the action and results in

⟨e−x̃TJφ(x)⟩J = ∫ DC ∫ DC̃ e
− N

g2
CTC̃+ 1

2
x̃
TCx̃+φ(x)TC̃φ(x)

,

where we introduced the network–averaged auxiliary field

C(u, v) = g2

N

N

∑
i=1

φ(xi(u))φ(xi(v))

via a Hubbard–Stratonovich transformation. The aver-
age over the connectivity and the subsequent Hubbard–
Stratonovich transformation decouple the dynamics
across units; afterwards the units are only coupled
through the global fields C and C̃.

Now, we consider the scaled cumulant generating func-
tional of the empirical density

WN(ℓ) = 1

N
ln ⟨⟨e∑N

i=1 ℓ(xi)⟩
x∣J
⟩
J

.

Using the above results and the abbreviation φ(x) ≡ φ,
it can be written as

WN(ℓ) = 1

N
ln ∫ DC ∫ DC̃ e

− N

g2
CTC̃+N Ωℓ(C,C̃)

,

Ωℓ(C, C̃) = ln ∫ Dx ∫ Dx̃ eS0(x,x̃)+ 1

2
x̃TCx̃+φTC̃φ+ℓ(x),

where the N in front of the single–particle cumulant gen-
erating functional Ω results from the factorization of the
N integrals over xi and x̃i each; thus it is a hallmark of
the decoupled dynamics. Next, we approximate the C

and C̃ integrals in a saddle–point approximation which
yields

WN(ℓ) = − 1

g2
CT

ℓ C̃ℓ +Ωℓ(Cℓ, C̃ℓ) +O(ln(N)/N),

where Cℓ and C̃ℓ are determined by the saddle–point
equations

Cℓ = g2 ∂C̃Ωℓ(C, C̃)∣Cℓ,C̃ℓ
,

C̃ℓ = g2 ∂CΩℓ(C, C̃)∣Cℓ,C̃ℓ
.

Here, ∂C denotes a partial functional derivative. In the
limit N → ∞, the remainder O(ln(N)/N) vanishes and
the saddle–point approximation becomes exact.

B. Rate Function

Here, we derive the rate function from the scaled cu-
mulant generating functional. According to the Gärtner-
Ellis theorem [23], we obtain the rate function via the
Legendre transformation

H(µ) = ∫ Dxµ(x)ℓµ(x) −W∞(ℓµ) (15)

with ℓµ implicitly defined by

µ =W ′
∞(ℓµ). (16)

Due to the saddle–point equations, the derivative of the
cumulant generating functional in Eq. (16) simplifies to
W ′
∞(ℓµ) = (∂ℓΩℓ)(Cℓ, C̃ℓ)∣ℓµ where the derivative only

acts on the ℓ that is explicit in Ωℓ(Cℓ, C̃ℓ) and not on the
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implicit dependencies through Cℓ, C̃ℓ. Thus, Eq. (16)
yields

µ(x) = ∫ Dx̃ eS0(x,x̃)+ 1

2
x̃TCℓµ x̃+φTC̃ℓµφ+ℓµ(x)

∫ Dx ∫ Dx̃ eS0(x,x̃)+ 1

2
x̃TCℓµ x̃+φTC̃ℓµφ+ℓµ(x)

.

Taking the logarithm and using W∞(ℓµ) + 1

g2 C
T

ℓµ
C̃ℓµ =

Ωℓµ(Cℓµ , C̃ℓµ) leads to

ℓµ(x) = ln µ(x)
∫ Dx̃ eS0(x,x̃)+ 1

2
x̃TCℓµ x̃

+W∞(ℓµ)

+ 1

g2
CT

ℓµ
C̃ℓµ − φTC̃ℓµφ.

Inserting ℓµ(x) into the Legendre transformation (15)
yields

H(µ) =∫ Dxµ(x) ln µ(x)
∫ Dx̃ eS0(x,x̃)+ 1

2
x̃TCℓµ x̃

+ 1

g2
CT

ℓµ
C̃ℓµ −CT

µ C̃ℓµ

with

Cµ(u, v) = ∫ Dxµ(x)φ(x(u))φ(x(v)).
Identifying µ(x) in the saddle–point equation

Cℓµ = g2 ∂C̃Ωℓ(C, C̃)∣Cℓµ ,C̃ℓµ

= g2 ∫ Dx ∫ Dx̃ φφeS0(x,x̃)+ 1

2
x̃TCℓµ x̃+φTC̃ℓµφ+ℓµ(x)

∫ Dx ∫ Dx̃ eS0(x,x̃)+ 1

2
x̃TCℓµ x̃+φTC̃ℓµφ+ℓµ(x)

yields

Cℓµ(u, v) = g2 ∫ Dxµ(x)φ(x(u))φ(x(v))
and thus Cℓµ = g2Cµ. Accordingly, the last two terms in
the Legendre transformation cancel and we arrive at

H(µ) = ∫ Dxµ(x) ln µ(x)
∫ Dx̃ eS0(x,x̃)+ g2

2
x̃TCµx̃

(17)

where still Cµ(u, v) = ∫ Dxµ(x)φ(x(u))φ(x(v)).
In the main text, we use the notation

∫ Dx̃ eS0(x,x̃)+ g2

2
x̃TCµx̃ = ⟨δ(ẋ +∇U(x) − η)⟩η

with Cη = 2Dδ + g2Cµ appearing in the rate function.
Indeed, using the Martin–Siggia–Rose–de Dominicis–
Janssen formalism, we have

⟨δ(ẋ +∇U(x) − η)⟩η = ∫ Dx̃ ex̃T(ẋ+∇U(x))⟨ex̃Tη⟩η
= ∫ Dx̃ ex̃T(ẋ+∇U(x))+ 1

2
x̃TCη x̃

which shows that the two notations are equivalent since

x̃T(ẋ +∇U(x)) + 1

2
x̃TCηx̃ = S0(x, x̃) + g2

2
x̃TCµx̃ for Cη =

2Dδ + g2Cµ.

C. Equivalence to Ben Arous and Guionnet (1995)

Here, we show explicitly that the rate function we
obtained generalizes the rate function obtained by Ben
Arous and Guionnet. We start with Theorem 4.1 in [11]
adapted to our notation: Define

Q(x) ∶= ∫ Dx̃ ex̃T(ẋ+∇U(x))+ 1

2
x̃Tx̃

and

G(µ) ∶= ∫ Dxµ(x) log (⟨egyT(ẋ+∇U(x))− g2

2
yTy⟩y) ,

where ⟨⋅⟩y is the expectation value over a zero–mean
Gaussian process y with Cµ(u, v) = ∫ Dxµ(x)x(u)x(v),
written as ⟨⋅⟩y = ∫ Dy ∫ Dỹ (⋅) eỹTy+ 1

2
ỹTCµỹ. With the

Kullback–Leibler divergence DKL(µ ∣Q), Theorem 4.1
states that the function

H̃(µ) =
⎧⎪⎪⎨⎪⎪⎩
DKL(µ ∣Q) −G(µ) if DKL(µ ∣Q) <∞
+∞ otherwise

is a good rate function.
Now we relate H̃ to the rate function that is derived

above, Eq. (17). Using the Onsager–Machlup action, we
can write

DKL(µ ∣Q) = ∫ Dxµ(x) log µ(x)
e−SOM(x)

+ C
with SOM(x) = 1

2
(ẋ + ∇U(x))T(ẋ + ∇U(x)). Next, we

transform gy → y, ỹ/g → ỹ and solve the integral over y

in G(µ):

∫ Dy e− 1

2
yTy+yT(ẋ+∇U(x)+ỹ) ∝ eSOM[x]+ỹT(ẋ+∇U(x))+ 1

2
ỹTỹ.

The Onsager–Machlup action in the logarithm in
DKL(µ ∣Q) and G(µ) cancel and we arrive at

H̃(µ) = ∫ Dxµ(x) log µ(x)
∫ Dỹ eỹT(ẋ+∇U(x))+ 1

2
ỹT(g2Cµ+δ)ỹ

up to an additive constant that we set to zero. Since
Cµ(u, v) = ∫ Dxµ(x)x(u)x(v), the rate function by Ben
Arous and Guionnet is thus equivalent to Eq. (8) with
φ(x) = x and D = 1

2
.

D. Relation to Sompolinsky, Crisanti, Sommers
(1988)

Here, we relate the approach that we laid out in the
main text to the approach pioneered by Sompolinsky,
Crisanti, and Sommers [4] (reviewed in [9, 10]) using our
notation for consistency. Therein, the starting point is
the scaled cumulant–generating functional
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ŴN(j) = 1

N
ln ⟨⟨ejTx⟩

x∣J
⟩
J

,

which gives rise to the cumulants of the trajectories. For
the linear functional

ℓ(x) = jTx,
we have ∑N

i=1 ℓ(xi) = jTx and thus WN(jTx) = ŴN(j).
Put differently, the scaled cumulant–generating func-
tional of the trajectories ŴN(j) is a special case of
the more general scaled cumulant–generating functional
WN(ℓ) we consider in this manuscript. Of course one can
start from the scaled cumulant–generating functional of
the observable of interest and derive the corresponding
rate function. Conversely, we show below how to obtain
the rate function of a specific observable from the rate
function of the empirical measure.

Contraction Principle

Here, we relate the rather general rate function of the
empirical measure H(µ) to the rate function of a par-
ticular observable I(C). As an example, we choose the
correlation function

C(u, v) = g2

N

N

∑
i=1

φ(xi(u))φ(xi(v))
because it is a quantity that arises naturally during the
Hubbard–Stratonovich transformation. The generic ap-
proach to this problem is given by the contraction prin-
ciple [23]:

I(C) = inf
µ s.t.C=g2 ∫ Dxµ(x)φφ

H(µ).
Here, the infimum is constrained to the em-
pirical measures that give rise to the correla-
tion function C, i.e. those that fulfill C(u, v) =
g2 ∫ Dxµ(x)φ(x(u))φ(x(v)). Writing H(µ) as the
Legendre transform of the scaled cumulant–generating
functional, H(µ) = infℓ[∫ Dxµ(x)ℓ(x) − W∞(ℓ)], the
empirical measure only appears linearly. Using a La-
grange multiplier k(u, v), the infimum over µ leads to
the constraint ℓ(x) = g2φTkφ and we arrive at

I(C) = inf
k
[kTC −W∞(g2φTkφ)].

Once again, we see how to relate WN(ℓ) to a specific
observable—this time for the choice ℓ(x) = g2φTkφ.

Up to this point, the discussion applies to any observ-
able. For the current example, we can proceed a bit
further. With the redefinition C̃ + g2k → C̃, we get

W∞(g2φTkφ) = extrC,C̃ [− 1

g2
CTC̃ +CTk +Ω0(C, C̃)] ,

Ω0(C, C̃) = ln ∫ Dx ∫ Dx̃ eS0(x,x̃)+ 1

2
x̃TCx̃+φTC̃φ,

which made Ω0 independent of k. Now we can take the
infimum over k, leading to

I(C) = extrC̃ [ 1g2CTC̃ −Ω0(C, C̃)] . (18)

The remaining extremum gives rise to the condition

C = g2 ∫ Dx ∫ Dx̃ φφeS0(x,x̃)+ 1

2
x̃TCx̃+φTC̃φ

∫ Dx ∫ Dx̃ eS0(x,x̃)+ 1

2
x̃TCx̃+φTC̃φ

,

i.e. a self–consistency condition for the correlation func-
tion.

As a side remark, we mention that the expression in
the brackets of Eq. (18) is the joint effective action for
C and C̃, because for N → ∞, the action equals the ef-
fective action. This result is therefore analogous to the
finding that the effective action in the Onsager–Machlup
formalism is given as the extremum of its counterpart in
the Martin–Siggia–Rose–de Dominicis–Janssen formal-
ism [27, eq. (24)]. The only difference is that here,
we are dealing with second order statistics and not just
mean values. The origin of this finding is the same in
both cases: we are only interested in the statistics of the
physical quantity (the one without tilde, x or C, respec-
tively). Therefore we only introduce a source field (k in
the present case) for this one, but not for the auxiliary
field, which amounts to setting the source field of the
latter to zero. This is translated into the extremum in
Eq. (18) over the auxiliary variable [27, appendix 5].

E. Log–Likelihood Derivative

Here, we calculate the derivatives of the log–likelihood
with respect to the parameters g and D. In terms of the
rate function, we have

∂a lnP (µ ∣ g,D) ≃ −N∂aH(µ ∣ g,D)
where a denotes either g or D. The parameters appear
only in the cross entropy

∂aH(µ) = −∫ Dxµ(x)∂a ln ⟨δ(ẋ +∇U(x) − η)⟩η
through the correlation function Cη(u, v) = 2Dδ(u − v)+
g2∫ Dxµ(x)φ(x(u))φ(x(v)). Above, we showed that

⟨δ(ẋ +∇U(x) − η)⟩η = ∫ Dx̃ ex̃T(ẋ+∇U(x))+ 1

2
x̃TCη x̃.

Because x̃ is at most quadratic in the exponent, the in-
tegral is solvable and we get

⟨δ(ẋ +∇U(x) − η)⟩η = e−
1

2
(ẋ+∇U(x))TC−1η (ẋ+∇U(x))√

det(2πCη) .
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Note that the normalization 1/√det(2πCη) does not de-
pend on the potential U . Now we can take the derivatives
of ln ⟨δ(ẋ +∇U(x) − η)⟩η and get

∂a ln ⟨δ(ẋ +∇U(x) − η)⟩η =
− 1

2
(ẋ +∇U(x))T ∂C−1η

∂a
(ẋ +∇U(x)) − 1

2
∂atr lnCη

where we used ln detC = tr lnC. With this, we arrive at

∂aH(µ) = 1

2
tr(C0

∂C−1η

∂a
) + 1

2
tr(∂Cη

∂a
C−1η )

where the integral over the empirical measure gave rise
to C0 = ∫ Dxµ(x)(ẋ +∇U(x))(ẋ +∇U(x)) and we used
∂a lnC = ∂C

∂a
C−1. Finally, using ∂C

∂a
C−1 = CC−1 ∂C

∂a
C−1 =

C ∂C−1

∂a
, we get

∂a lnP (µ ∣ g,D) ≃ −N
2
tr((C0 −Cη)∂C−1η

∂a
)

as stated in the main text.

F. Cross Entropy Difference

Here, we express the cross entropy difference

H1 −H2 ∶=H(µ ∣U1, φ1, ĝ1, D̂1) −H(µ ∣U2, φ2, ĝ2, D̂2)
in a form that can be evaluated numerically. Using the
rate function, we get

H1 −H2 = ∫ Dxµ(x) ln ⟨δ(ẋ +∇U2(x) − η2)⟩η2⟨δ(ẋ +∇U1(x) − η1)⟩η1

with Cηi
= 2D̂iδ + ĝ2i ∫ Dxµ(x)φiφi. Again, we use

⟨δ(ẋ +∇U(x) − η)⟩η = e−
1

2
(ẋ+∇U(x))TC−1η (ẋ+∇U(x))√

det(2πCη)
to arrive at

H1 −H2 = − 1

2
tr (C1C

−1
η1
) − 1

2
tr lnCη1

+ 1

2
tr (C2C

−1
η2
) + 1

2
tr lnCη2

with Ci = ∫ Dxµ(x)(ẋ + ∇Ui(x))(ẋ + ∇Ui(x)). For sta-
tionary correlation functions over infinite time intervals,
we can evaluate the traces as integrals over the power
spectra:

tr(AB−1)∝ ∫ ∞

−∞

Ã(f)
B̃(f)df,

tr lnA∝ ∫
∞

−∞
ln(Ã(f))df.

With this, we get

H1 −H2 ∝− 1

2
∫
∞

−∞

Sẋ+∇U1(x)(f)
2D̂1 + ĝ21Sφ1(x)(f)df

− 1

2
∫
∞

−∞
ln(2D̂1 + ĝ21Sφ1(x)(f))df

+ 1

2
∫
∞

−∞

Sẋ+∇U2(x)(f)
2D̂2 + ĝ22Sφ2(x)(f)df

+ 1

2
∫
∞

−∞
ln(2D̂2 + ĝ22Sφ2(x)(f))df.

Accordingly, the cross entropy difference can be evaluated
with integrals over the respective power spectra that can
be obtained using Fast Fourier Transformation.

G. Timescale of Prediction Error

We here relate the timescale of the prediction er-
ror to the timescale of the autocorrelation function
Cx(τ)/Cx(0) ∼ exp(−τ/τc). The predicted variance in
the continuous time limit is determined by the corre-
sponding limit of Eq. (14),

σ2

x̂ = Cx(t̂, t̂) −∫ T

0
∫

T

0

Cx(t̂, u)C−1x (u, v)Cx(v, t̂)dudv,
where T denotes the training interval. Writing t̂ = T + τ
and approximating Cx(T + τ, u) ≈ Cx(T,u)e−τ/τc , we get

σ2

x̂ ≈ Cx(t̂, t̂) − e−2τ/τcCx(T,T ),
where we used ∫ T

0
C−1x (u, v)Cx(v, T )dv = δ(u−T ). Using

stationarity Cx(u, v) = Cx(v − u), we arrive at

σ2

x̂/σ2

x ≈ 1 − e−2τ/τc
where Cx(0) = σ2

x. Thus, for large τ , the timescale of the
prediction error is given by τc/2.
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