001     885649
005     20240711092244.0
024 7 _ |a 10.1016/j.energy.2019.116736
|2 doi
024 7 _ |a 0360-5442
|2 ISSN
024 7 _ |a 1873-6785
|2 ISSN
024 7 _ |a 2128/25886
|2 Handle
024 7 _ |a WOS:000518699000084
|2 WOS
037 _ _ |a FZJ-2020-03980
082 _ _ |a 600
100 1 _ |a Surup, Gerrit Ralf
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Effect of operating conditions and feedstock composition on the properties of manganese oxide or quartz charcoal pellets for the use in ferroalloy industries
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1602764727_1065
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This study investigates the effect of heat treatment temperature on the properties of charcoal composite pellets used for the reduction of ferroalloys. The heavy fraction of biooil was used as a binder for the charcoal ore pellet preparation. The effect of heat treatment temperature on the pellet shrinkage was related to the degree of reduction which varied with feedstock and ore composition. The results showed that the size and shape of the charcoal pellets were not affected by the biooil devolatilization. Manganese charcoal pellets showed higher electrical resistance during pyrolysis, whereas the structure, composition and electrical resistance of silica composite pellets remained unaffected by heat treatment temperatures 1650 °C. However, the secondary heat treatment decreased the CO2 gasification reactivity and electrical resistivity of charcoal composite pellets. In addition, the findings of this work demonstrate the potential for using biooil as a binder for the charcoal composite pellets used in ferroalloy industries. The composite pellets are suitable to pre-reduce the manganese ore in the low temperature zones of an industrial furnace, and the charcoal pellets can be used as an alternative bed material. However, the high CO2 reactivity may create challenges during the direct replacement of metallurgical coke with the bio-reductants.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Nielsen, Henrik Kofoed
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Großarth, Marius
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Deike, Rüdiger
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Van den Bulcke, Jan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kibleur, Pierre
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Müller, Michael
|0 P:(DE-Juel1)129765
|b 6
700 1 _ |a Ziegner, Mirko
|0 P:(DE-Juel1)129815
|b 7
700 1 _ |a Yazhenskikh, Elena
|0 P:(DE-Juel1)129813
|b 8
700 1 _ |a Beloshapkin, Sergey
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Leahy, James J.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Trubetskaya, Anna
|0 0000-0002-6571-3277
|b 11
|e Corresponding author
773 _ _ |a 10.1016/j.energy.2019.116736
|g Vol. 193, p. 116736 -
|0 PERI:(DE-600)2019804-8
|p 116736 -
|t Energy
|v 193
|y 2020
|x 0360-5442
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/885649/files/Surup%20Energy%20193%20%282020%29%20116736%20Manuscript.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/885649/files/Surup%20Energy%20193%20%282020%29%20116736%20Manuscript.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:885649
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129765
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129815
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129813
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGY : 2018
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ENERGY : 2018
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-10
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-10
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-10
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21