000885651 001__ 885651
000885651 005__ 20240709094310.0
000885651 0247_ $$2doi$$a10.1016/j.fuel.2020.118663
000885651 0247_ $$2ISSN$$a0016-2361
000885651 0247_ $$2ISSN$$a1873-7153
000885651 0247_ $$2Handle$$a2128/25888
000885651 0247_ $$2WOS$$aWOS:000562044100001
000885651 037__ $$aFZJ-2020-03982
000885651 082__ $$a660
000885651 1001_ $$0P:(DE-Juel1)171689$$aSchupsky, Jan Peter$$b0$$eCorresponding author
000885651 245__ $$aViscosity and crystal morphology data of anorthite bearing synthetic coal slag systems
000885651 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2020
000885651 3367_ $$2DRIVER$$aarticle
000885651 3367_ $$2DataCite$$aOutput Types/Journal article
000885651 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602770338_1062
000885651 3367_ $$2BibTeX$$aARTICLE
000885651 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885651 3367_ $$00$$2EndNote$$aJournal Article
000885651 520__ $$aIn this study, three synthetic SiO2-Al2O3-CaO-Fe2O3(-MgO) coal slag systems (ST-D-2, HKT, SOM-1) with varying basicity were investigated on their viscosity and the dominant crystallisation product: anorthite (CaAl2Si2O8). To predict crystallisation products, thermodynamic equilibrium calculations were executed using FactSage and the GTox database. Anorthite is predicted as a major crystallising phase in the slags. High temperature viscosimetry revealed non-Newtonian behaviour of the slags below 1275 °C. Additional viscosity measurements revealed viscosity deviations, based on crystallisation. Post-experimental analysis of the slags revealed the presence of elongated crystals with anorthite composition. Additional quenching experiments were performed and crystallisation results of the HKT slag were exemplarily shown in this study. Quenched samples were analysed by XRD and SEM-EDX to determine the crystallised phases and the crystal structure. Anorthite was identified as the dominant phase in the HKT slag but also in the ST-D-2 and SOM-1 slag system. As crystallisation strongly influences slag viscosity, a phase analysis of anorthite was conducted. The crystal morphology of anorthite displayed a common elongated characteristic and was generalised as a tetragonal prism with variations in its dimensions. Crystal size measurements ascertained constant small crystal sizes at temperatures below 1100 °C, and exhibited an increase of anorthite length with increasing temperatures above 1100 °C. Additionally, the aspect ratio was examined to ensure a complete three-dimensional characterisation of the anorthite phase. Crystal morphology data can be used in a future viscosity model as enhancing parameters to enable the calculation of viscosities for partly crystallised slags.
000885651 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000885651 588__ $$aDataset connected to CrossRef
000885651 7001_ $$0P:(DE-HGF)0$$aSaar, Olga$$b1
000885651 7001_ $$0P:(DE-Juel1)145147$$aWu, Guixuan$$b2
000885651 7001_ $$0P:(DE-Juel1)166092$$aDohrn, Matthias$$b3
000885651 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b4
000885651 773__ $$0PERI:(DE-600)1483656-7$$a10.1016/j.fuel.2020.118663$$gVol. 280, p. 118663 -$$p118663 -$$tFuel$$v280$$x0016-2361$$y2020
000885651 8564_ $$uhttps://juser.fz-juelich.de/record/885651/files/Schupsky%20Fuel%20280%20%282020%29%20118663%20Manuscript-1.pdf$$yPublished on 2020-07-13. Available in OpenAccess from 2022-07-13.
000885651 8564_ $$uhttps://juser.fz-juelich.de/record/885651/files/Schupsky%20Fuel%20280%20%282020%29%20118663%20Manuscript-1.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-07-13. Available in OpenAccess from 2022-07-13.
000885651 909CO $$ooai:juser.fz-juelich.de:885651$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885651 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171689$$aForschungszentrum Jülich$$b0$$kFZJ
000885651 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145147$$aForschungszentrum Jülich$$b2$$kFZJ
000885651 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b4$$kFZJ
000885651 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000885651 9141_ $$y2020
000885651 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-05
000885651 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-05
000885651 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-05
000885651 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-05
000885651 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000885651 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000885651 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUEL : 2018$$d2020-01-05
000885651 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFUEL : 2018$$d2020-01-05
000885651 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-05
000885651 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-05
000885651 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-05
000885651 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-05
000885651 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-05
000885651 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-05
000885651 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-05
000885651 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000885651 9801_ $$aFullTexts
000885651 980__ $$ajournal
000885651 980__ $$aVDB
000885651 980__ $$aUNRESTRICTED
000885651 980__ $$aI:(DE-Juel1)IEK-2-20101013
000885651 981__ $$aI:(DE-Juel1)IMD-1-20101013