000885652 001__ 885652
000885652 005__ 20240709094310.0
000885652 0247_ $$2doi$$a10.1016/j.calphad.2020.101992
000885652 0247_ $$2ISSN$$a0364-5916
000885652 0247_ $$2ISSN$$a1873-2984
000885652 0247_ $$2Handle$$a2128/25887
000885652 0247_ $$2altmetric$$aaltmetric:88777948
000885652 0247_ $$2WOS$$aWOS:000589922300009
000885652 037__ $$aFZJ-2020-03983
000885652 082__ $$a540
000885652 1001_ $$0P:(DE-Juel1)159377$$aSergeev, D.$$b0$$eCorresponding author
000885652 245__ $$aExperimental study of thermodynamic properties and phase equilibria in Na2CO3–K2CO3 system
000885652 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000885652 3367_ $$2DRIVER$$aarticle
000885652 3367_ $$2DataCite$$aOutput Types/Journal article
000885652 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602767290_1064
000885652 3367_ $$2BibTeX$$aARTICLE
000885652 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885652 3367_ $$00$$2EndNote$$aJournal Article
000885652 520__ $$aSodium and potassium carbonates and their mixtures are important for different applications, e.g. for latent thermal energy storage, die-casting processes and molten carbonate fuel cells. In this work the phase diagram and thermodynamic properties of Na2CO3–K2CO3 system were studied by differential thermal analysis, differential scanning calorimetry and high temperature X-ray diffraction. Three carbonate mixtures (56, 25 and 75 mol% of Na2CO3) have solid-solid transition in a wide temperature range between 648 K and 823 K. The high temperature XRD analysis has shown that this transition is a continuous process of changing of the unit cell volume without structural changing of the hexagonal lattice. This phenomenon has also been observed on the measured heat capacity curves. The obtained experimental results were compared with calculations performed using the previous thermodynamic datasets. The comparison of these results shows that further thermochemical assessment of this system needs to be performed to achieve better agreement with the available experimental data.
000885652 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000885652 588__ $$aDataset connected to CrossRef
000885652 7001_ $$0P:(DE-Juel1)129813$$aYazhenskikh, E.$$b1
000885652 7001_ $$0P:(DE-HGF)0$$aHaseli, P.$$b2
000885652 7001_ $$0P:(DE-Juel1)173033$$aLiu, M.$$b3
000885652 7001_ $$0P:(DE-Juel1)129815$$aZiegner, M.$$b4
000885652 7001_ $$0P:(DE-HGF)0$$aBruno, F.$$b5
000885652 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b6$$ufzj
000885652 773__ $$0PERI:(DE-600)1501512-9$$a10.1016/j.calphad.2020.101992$$gVol. 71, p. 101992 -$$p101992 -$$tCalphad$$v71$$x0364-5916$$y2020
000885652 8564_ $$uhttps://juser.fz-juelich.de/record/885652/files/Sergeev%20Calphad%2071%20%282020%29%20101992%20Manuscript_.pdf$$yPublished on 2020-08-23. Available in OpenAccess from 2022-08-23.
000885652 8564_ $$uhttps://juser.fz-juelich.de/record/885652/files/Sergeev%20Calphad%2071%20%282020%29%20101992%20Manuscript_.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-08-23. Available in OpenAccess from 2022-08-23.
000885652 909CO $$ooai:juser.fz-juelich.de:885652$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885652 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159377$$aForschungszentrum Jülich$$b0$$kFZJ
000885652 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129813$$aForschungszentrum Jülich$$b1$$kFZJ
000885652 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173033$$aForschungszentrum Jülich$$b3$$kFZJ
000885652 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129815$$aForschungszentrum Jülich$$b4$$kFZJ
000885652 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b6$$kFZJ
000885652 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000885652 9141_ $$y2020
000885652 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-11
000885652 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-11
000885652 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-11
000885652 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-11
000885652 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000885652 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000885652 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-11
000885652 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-11
000885652 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-11
000885652 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-11
000885652 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-11
000885652 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-11
000885652 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCALPHAD : 2018$$d2020-01-11
000885652 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-11
000885652 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-11
000885652 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000885652 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x1
000885652 9801_ $$aFullTexts
000885652 980__ $$ajournal
000885652 980__ $$aVDB
000885652 980__ $$aUNRESTRICTED
000885652 980__ $$aI:(DE-Juel1)IEK-2-20101013
000885652 980__ $$aI:(DE-Juel1)PGI-9-20110106
000885652 981__ $$aI:(DE-Juel1)IMD-1-20101013