001     885652
005     20240709094310.0
024 7 _ |a 10.1016/j.calphad.2020.101992
|2 doi
024 7 _ |a 0364-5916
|2 ISSN
024 7 _ |a 1873-2984
|2 ISSN
024 7 _ |a 2128/25887
|2 Handle
024 7 _ |a altmetric:88777948
|2 altmetric
024 7 _ |a WOS:000589922300009
|2 WOS
037 _ _ |a FZJ-2020-03983
082 _ _ |a 540
100 1 _ |a Sergeev, D.
|0 P:(DE-Juel1)159377
|b 0
|e Corresponding author
245 _ _ |a Experimental study of thermodynamic properties and phase equilibria in Na2CO3–K2CO3 system
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1602767290_1064
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Sodium and potassium carbonates and their mixtures are important for different applications, e.g. for latent thermal energy storage, die-casting processes and molten carbonate fuel cells. In this work the phase diagram and thermodynamic properties of Na2CO3–K2CO3 system were studied by differential thermal analysis, differential scanning calorimetry and high temperature X-ray diffraction. Three carbonate mixtures (56, 25 and 75 mol% of Na2CO3) have solid-solid transition in a wide temperature range between 648 K and 823 K. The high temperature XRD analysis has shown that this transition is a continuous process of changing of the unit cell volume without structural changing of the hexagonal lattice. This phenomenon has also been observed on the measured heat capacity curves. The obtained experimental results were compared with calculations performed using the previous thermodynamic datasets. The comparison of these results shows that further thermochemical assessment of this system needs to be performed to achieve better agreement with the available experimental data.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Yazhenskikh, E.
|0 P:(DE-Juel1)129813
|b 1
700 1 _ |a Haseli, P.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Liu, M.
|0 P:(DE-Juel1)173033
|b 3
700 1 _ |a Ziegner, M.
|0 P:(DE-Juel1)129815
|b 4
700 1 _ |a Bruno, F.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Müller, Michael
|0 P:(DE-Juel1)129765
|b 6
|u fzj
773 _ _ |a 10.1016/j.calphad.2020.101992
|g Vol. 71, p. 101992 -
|0 PERI:(DE-600)1501512-9
|p 101992 -
|t Calphad
|v 71
|y 2020
|x 0364-5916
856 4 _ |y Published on 2020-08-23. Available in OpenAccess from 2022-08-23.
|u https://juser.fz-juelich.de/record/885652/files/Sergeev%20Calphad%2071%20%282020%29%20101992%20Manuscript_.pdf
856 4 _ |y Published on 2020-08-23. Available in OpenAccess from 2022-08-23.
|x pdfa
|u https://juser.fz-juelich.de/record/885652/files/Sergeev%20Calphad%2071%20%282020%29%20101992%20Manuscript_.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:885652
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159377
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129813
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)173033
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129815
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129765
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-11
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CALPHAD : 2018
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-11
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21