001     885654
005     20240709094310.0
024 7 _ |a 10.1016/j.biombioe.2020.105732
|2 doi
024 7 _ |a 0961-9534
|2 ISSN
024 7 _ |a 1873-2909
|2 ISSN
024 7 _ |a 2128/25889
|2 Handle
024 7 _ |a WOS:000571679800002
|2 WOS
037 _ _ |a FZJ-2020-03985
082 _ _ |a 530
100 1 _ |a Mielke, Konrad
|0 P:(DE-Juel1)164669
|b 0
|e Corresponding author
245 _ _ |a Chemical fractionation of inorganic constituents in entrained flow gasification of slurry from straw pyrolysis
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1602770455_1062
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Pressurized entrained-flow gasification (PEFG) of straw biomass is currently being studied as a potentially sustainable and economically viable process to produce fuels and other vital chemicals. In the process chain the gasification is integrated and straw is converted via pyrolysis into a bioslurry consisting of a liquid, tar-rich phase and char. Afterwards, the slurry is gasified into a tar-free, low-methane syngas which is a basic reactant for the synthesis of biofuels. At the high temperatures over 1200 °C the ash constituents of the char in the bioslurry melt and flow down the inner wall as slag. The slag viscosity has to be in a certain range to form a protective layer at the reactor wall and to guarantee a continuous removing. For this reason, the composition of the molten ash at the reactor wall has to be well known. Due to several fractionation processes in the gasifier the composition of the slag at the reactor wall does not correspond directly with the slurry ash. Therefore, experiments were conducted to identify depletion and enrichment processes in the gasifier. Finally, the composition of the slag at the reactor wall is obtained and can be used for the adjustment of the viscosity.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kolb, Thomas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Müller, Michael
|0 P:(DE-Juel1)129765
|b 2
773 _ _ |a 10.1016/j.biombioe.2020.105732
|g Vol. 141, p. 105732 -
|0 PERI:(DE-600)1496404-1
|p 105732 -
|t Biomass and bioenergy
|v 141
|y 2020
|x 0961-9534
856 4 _ |y Published on 2020-08-27. Available in OpenAccess from 2022-08-27.
|u https://juser.fz-juelich.de/record/885654/files/Mielke%20Biomass%20Bioenerg%20141%20%282020%29%20105732%20Manuscript.pdf
856 4 _ |y Published on 2020-08-27. Available in OpenAccess from 2022-08-27.
|x pdfa
|u https://juser.fz-juelich.de/record/885654/files/Mielke%20Biomass%20Bioenerg%20141%20%282020%29%20105732%20Manuscript.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:885654
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164669
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129765
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-10
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOMASS BIOENERG : 2018
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-10
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21