000885664 001__ 885664
000885664 005__ 20211203113018.0
000885664 0247_ $$2doi$$a10.1029/2017JD028187
000885664 0247_ $$2ISSN$$a0148-0227
000885664 0247_ $$2ISSN$$a2156-2202
000885664 0247_ $$2ISSN$$a2169-897X
000885664 0247_ $$2ISSN$$a2169-8996
000885664 037__ $$aFZJ-2020-03995
000885664 041__ $$aEnglish
000885664 082__ $$a550
000885664 1001_ $$00000-0002-3149-4096$$aSulis, M.$$b0
000885664 245__ $$aQuantifying the Impact of Subsurface-Land Surface Physical Processes on the Predictive Skill of Subseasonal Mesoscale Atmospheric Simulations
000885664 260__ $$aHoboken, NJ$$bWiley$$c2018
000885664 3367_ $$2DRIVER$$aarticle
000885664 3367_ $$2DataCite$$aOutput Types/Journal article
000885664 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638527354_25640
000885664 3367_ $$2BibTeX$$aARTICLE
000885664 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885664 3367_ $$00$$2EndNote$$aJournal Article
000885664 520__ $$aIntegrated terrestrial system modeling platforms, which simulate the 3‐D flow of water both in the subsurface and the atmosphere, are expected to improve the realism of predictions through a more detailed physics‐based representation of hydrometeorological processes and feedbacks. We test this expectation by evaluating simulation results from different configurations of an atmospheric model with increasing complexity in the representation of land surface and subsurface physical processes. The evaluation is performed using observations during the ($HD(CP)^2$) Observational Prototype Experiment field campaign in April–May 2013 over western Germany. The augmented model physics do not improve the prediction of daily cumulative precipitation and minimum temperature during this period. Moreover, a cold bias is introduced in the simulated daily maximum temperature, which decreases the performance of the atmospheric model with respect to its standard configuration. The decreased performance in the maximum temperature is traced in part to a higher simulated soil moisture, which shifts surface flux partitioning toward higher latent and lower sensible heat fluxes. The better reproduced air temperature profiles simulated by the standard atmospheric model comes, however, with an overestimated heat flux at the land surface caused by a warm bias in the simulated soil temperature. Simulated atmospheric states do not correlate significantly with differences in soil moisture and temperature; thus, different turbulent flux parameterizations dominate the propagation of the subsurface signal into the atmosphere. The strong influence of the lateral synoptic forcings on the results suggests, however, the need for further investigations encompassing different weather situations or regions with stronger land‐atmosphere coupling conditions.
000885664 536__ $$0G:(DE-Juel1)hbn33_20190501$$aTerrestrial Systems Modeling – Validation with Polarimetric Radar Retrievals and Data Assimilation (hbn33_20190501)$$chbn33_20190501$$fTerrestrial Systems Modeling – Validation with Polarimetric Radar Retrievals and Data Assimilation$$x0
000885664 588__ $$aDataset connected to CrossRef
000885664 7001_ $$00000-0001-6104-2165$$aKeune, J.$$b1
000885664 7001_ $$00000-0002-0840-0717$$aShrestha, P.$$b2
000885664 7001_ $$00000-0003-3001-8642$$aSimmer, C.$$b3
000885664 7001_ $$0P:(DE-Juel1)151405$$aKollet, S. J.$$b4
000885664 773__ $$0PERI:(DE-600)2016800-7$$a10.1029/2017JD028187$$gVol. 123, no. 17, p. 9131 - 9151$$n17$$p9131 - 9151$$tJournal of geophysical research / D$$v123$$x2169-897X$$y2018
000885664 909CO $$ooai:juser.fz-juelich.de:885664$$pextern4vita
000885664 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151405$$aForschungszentrum Jülich$$b4$$kFZJ
000885664 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-27$$wger
000885664 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000885664 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-27
000885664 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27
000885664 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-27
000885664 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27
000885664 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27
000885664 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27
000885664 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-27
000885664 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ GEOPHYS RES-ATMOS : 2018$$d2020-02-27
000885664 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27
000885664 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-27
000885664 980__ $$ajournal
000885664 980__ $$aEDITORS
000885664 980__ $$aI:(DE-Juel1)NIC-20090406
000885664 9801_ $$aEXTERN4VITA