000885676 001__ 885676
000885676 005__ 20240712112825.0
000885676 0247_ $$2doi$$a10.1016/j.jpowsour.2020.228943
000885676 0247_ $$2ISSN$$a0378-7753
000885676 0247_ $$2ISSN$$a1873-2755
000885676 0247_ $$2Handle$$a2128/25953
000885676 0247_ $$2altmetric$$aaltmetric:91537304
000885676 0247_ $$2WOS$$aWOS:000597242900009
000885676 037__ $$aFZJ-2020-04007
000885676 041__ $$aEnglish
000885676 082__ $$a620
000885676 1001_ $$0P:(DE-HGF)0$$aRittweger, Florian$$b0$$eCorresponding author
000885676 245__ $$aInvestigation of charge carrier dynamics in positive lithium-ion battery electrodes via optical in situ observation
000885676 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2021
000885676 3367_ $$2DRIVER$$aarticle
000885676 3367_ $$2DataCite$$aOutput Types/Journal article
000885676 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1603715770_5606
000885676 3367_ $$2BibTeX$$aARTICLE
000885676 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885676 3367_ $$00$$2EndNote$$aJournal Article
000885676 520__ $$aWe present optical in situ investigations of lithium-ion dynamics in lithium iron phosphate based positive electrodes. The change in reflectivity of these cathodes during charge and discharge is used to estimate apparent diffusion coefficients for the lithiation and delithiation process of the entire electrode. Thereby, a scaling analysis of the transport process is applied, which clearly reveals its diffusive character.Results are shown for cathodes, in which the common additive carbon as well as the conductive and electrochromic marker additives (indium tin oxide and antimony tin oxide) are used. The latter leads to a substantial increase of visibility of the optical effect in the cathodes while electric properties remain qualitatively unchanged.The procedure extends common characterization techniques of positive electrode materials via a novel and integral combination of electrical and optical measurements.
000885676 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000885676 588__ $$aDataset connected to CrossRef
000885676 7001_ $$0P:(DE-HGF)0$$aModrzynski, Christian$$b1
000885676 7001_ $$0P:(DE-HGF)0$$aRoscher, Valentin$$b2
000885676 7001_ $$0P:(DE-Juel1)173719$$aDanilov, Dmitry L.$$b3
000885676 7001_ $$0P:(DE-Juel1)165918$$aNotten, Peter H. L.$$b4
000885676 7001_ $$0P:(DE-HGF)0$$aRiemschneider, Karl-Ragmar$$b5
000885676 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2020.228943$$gVol. 482, p. 228943 -$$p228943 -$$tJournal of power sources$$v482$$x0378-7753$$y2021
000885676 8564_ $$uhttps://juser.fz-juelich.de/record/885676/files/Rittweger%20accepted%20preprint%2C%20in%20situ%20optical%20electrochemical%20measurements%20Li-ion%20electrodes%2C%20JPS%202020.pdf$$yOpenAccess
000885676 8564_ $$uhttps://juser.fz-juelich.de/record/885676/files/Rittweger%2C%20in%20situ%20optical%20electrochemical%20measurements%20Li-ion%20electrodes%2C%20JPS%202020.pdf$$yRestricted
000885676 8564_ $$uhttps://juser.fz-juelich.de/record/885676/files/Rittweger%2C%20in%20situ%20optical%20electrochemical%20measurements%20Li-ion%20electrodes%2C%20JPS%202020.pdf?subformat=pdfa$$xpdfa$$yRestricted
000885676 909CO $$ooai:juser.fz-juelich.de:885676$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885676 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Applied Sciences, Hamburg$$b0
000885676 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Applied Sciences, Hamburg$$b1
000885676 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Applied Sciences, Hamburg$$b2
000885676 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173719$$aForschungszentrum Jülich$$b3$$kFZJ
000885676 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165918$$aForschungszentrum Jülich$$b4$$kFZJ
000885676 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)165918$$aUniversity of Technology, Eindhoven$$b4
000885676 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)165918$$a University of Technology Sidney$$b4
000885676 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Applied Sciences, Hamburg$$b5
000885676 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000885676 9141_ $$y2021
000885676 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-03
000885676 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-03
000885676 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-03
000885676 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-03
000885676 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-03
000885676 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2018$$d2020-01-03
000885676 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-03
000885676 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-03
000885676 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-03
000885676 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885676 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-03
000885676 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2018$$d2020-01-03
000885676 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-03
000885676 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-03
000885676 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-03
000885676 920__ $$lyes
000885676 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000885676 9801_ $$aFullTexts
000885676 980__ $$ajournal
000885676 980__ $$aVDB
000885676 980__ $$aUNRESTRICTED
000885676 980__ $$aI:(DE-Juel1)IEK-9-20110218
000885676 981__ $$aI:(DE-Juel1)IET-1-20110218