001     885676
005     20240712112825.0
024 7 _ |a 10.1016/j.jpowsour.2020.228943
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a 2128/25953
|2 Handle
024 7 _ |a altmetric:91537304
|2 altmetric
024 7 _ |a WOS:000597242900009
|2 WOS
037 _ _ |a FZJ-2020-04007
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Rittweger, Florian
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Investigation of charge carrier dynamics in positive lithium-ion battery electrodes via optical in situ observation
260 _ _ |a New York, NY [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1603715770_5606
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present optical in situ investigations of lithium-ion dynamics in lithium iron phosphate based positive electrodes. The change in reflectivity of these cathodes during charge and discharge is used to estimate apparent diffusion coefficients for the lithiation and delithiation process of the entire electrode. Thereby, a scaling analysis of the transport process is applied, which clearly reveals its diffusive character.Results are shown for cathodes, in which the common additive carbon as well as the conductive and electrochromic marker additives (indium tin oxide and antimony tin oxide) are used. The latter leads to a substantial increase of visibility of the optical effect in the cathodes while electric properties remain qualitatively unchanged.The procedure extends common characterization techniques of positive electrode materials via a novel and integral combination of electrical and optical measurements.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Modrzynski, Christian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Roscher, Valentin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Danilov, Dmitry L.
|0 P:(DE-Juel1)173719
|b 3
700 1 _ |a Notten, Peter H. L.
|0 P:(DE-Juel1)165918
|b 4
700 1 _ |a Riemschneider, Karl-Ragmar
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1016/j.jpowsour.2020.228943
|g Vol. 482, p. 228943 -
|0 PERI:(DE-600)1491915-1
|p 228943 -
|t Journal of power sources
|v 482
|y 2021
|x 0378-7753
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/885676/files/Rittweger%20accepted%20preprint%2C%20in%20situ%20optical%20electrochemical%20measurements%20Li-ion%20electrodes%2C%20JPS%202020.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/885676/files/Rittweger%2C%20in%20situ%20optical%20electrochemical%20measurements%20Li-ion%20electrodes%2C%20JPS%202020.pdf
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/885676/files/Rittweger%2C%20in%20situ%20optical%20electrochemical%20measurements%20Li-ion%20electrodes%2C%20JPS%202020.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:885676
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a University of Applied Sciences, Hamburg
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a University of Applied Sciences, Hamburg
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a University of Applied Sciences, Hamburg
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)173719
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)165918
910 1 _ |a University of Technology, Eindhoven
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)165918
910 1 _ |a University of Technology Sidney
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)165918
910 1 _ |a University of Applied Sciences, Hamburg
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
913 0 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrochemical Storage
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-03
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2018
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2018
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21