Hauptseite > Publikationsdatenbank > A Hybrid backward Euler Control Volume Method To Solve The Concentration-dependent Solid-State Diffusion Problem in Battery Modeling > print |
001 | 885678 | ||
005 | 20240712112825.0 | ||
024 | 7 | _ | |a 10.4236/jam.2020.86083 |2 doi |
024 | 7 | _ | |a 10.4236/jamp.2020.86083 |2 doi |
024 | 7 | _ | |a 2128/26841 |2 Handle |
037 | _ | _ | |a FZJ-2020-04009 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Chayambuka, Kudakwashe |0 P:(DE-Juel1)186070 |b 0 |u fzj |
245 | _ | _ | |a A Hybrid backward Euler Control Volume Method To Solve The Concentration-dependent Solid-State Diffusion Problem in Battery Modeling |
260 | _ | _ | |a New York, NY [u.a.] |c 2020 |b Springer |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1611155789_7512 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Several efficient analytical methods have been developed to solve the solid-state diffusion problem, for constant diffusion coefficient problems. However, these methods cannot be applied for concentration-dependent diffusion coefficient problems and numerical methods are used instead. Herein, grid-based numerical methods derived from the control volume discretization are presented to resolve the characteristic nonlinear system of partial differential equations. A novel hybrid backward Euler control volume (HBECV) method is presented which requires only one iteration to reach an implicit solution. The HBECV results are shown to be stable and accurate for a moderate number of grid points. The computational speed and accuracy of the HBECV, justify its use in battery simulations, in which the solid-state diffusion coefficient is a strong function of the concentration. |
536 | _ | _ | |a 131 - Electrochemical Storage (POF3-131) |0 G:(DE-HGF)POF3-131 |c POF3-131 |f POF III |x 0 |
700 | 1 | _ | |a Mulder, Grietus |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Danilov, Dmitri |0 P:(DE-Juel1)173719 |b 2 |u fzj |
700 | 1 | _ | |a Notten, Peter H. L. |0 P:(DE-Juel1)165918 |b 3 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.4236/jamp.2020.86083 |0 PERI:(DE-600)2037336-3 |p 1066-1080 |t Journal of applied mechanics and technical physics |v 8 |y 2020 |x 0021-8944 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/885678/files/jamp_2020060416171467.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:885678 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)186070 |
910 | 1 | _ | |a VITO, Mol, Belgium |0 I:(DE-HGF)0 |b 0 |6 P:(DE-Juel1)186070 |
910 | 1 | _ | |a University of Technology Eindhoven |0 I:(DE-HGF)0 |b 0 |6 P:(DE-Juel1)186070 |
910 | 1 | _ | |a VITO, Mol, Belgium |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Energy Ville, Genk, Belgium |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)173719 |
910 | 1 | _ | |a University of Technology Eindhoven |0 I:(DE-HGF)0 |b 2 |6 P:(DE-Juel1)173719 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)165918 |
910 | 1 | _ | |a Universit of Technology Eindhoven |0 I:(DE-HGF)0 |b 3 |6 P:(DE-Juel1)165918 |
913 | 1 | _ | |a DE-HGF |b Energie |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-131 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Electrochemical Storage |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-09-11 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-09-11 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J APPL MECH TECH PH+ : 2018 |d 2020-09-11 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-09-11 |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2020-09-11 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-09-11 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-09-11 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-09-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-09-11 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-09-11 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-09-11 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-9-20110218 |k IEK-9 |l Grundlagen der Elektrochemie |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-9-20110218 |
981 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|