001     885680
005     20240712112825.0
024 7 _ |a 10.1002/aenm.202001310
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a 2128/25894
|2 Handle
024 7 _ |a altmetric:88188967
|2 altmetric
024 7 _ |a WOS:000558672700001
|2 WOS
037 _ _ |a FZJ-2020-04011
041 _ _ |a English
082 _ _ |a 050
100 1 _ |a Chayambuka, Kudakwashe
|0 P:(DE-Juel1)186070
|b 0
|e Corresponding author
245 _ _ |a From Li‐Ion Batteries toward Na‐Ion Chemistries: Challenges and Opportunities
260 _ _ |a Weinheim
|c 2020
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1602832071_17894
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Among the existing energy storage technologies, lithium‐ion batteries (LIBs) have unmatched energy density and versatility. From the time of their first commercialization in 1991, the growth in LIBs has been driven by portable devices. In recent years, however, large‐scale electric vehicle and stationary applications have emerged. Because LIB raw material deposits are unevenly distributed and prone to price fluctuations, these large‐scale applications have put unprecedented pressure on the LIB value chain, resulting in the need for alternative energy storage chemistries. The sodium‐ion battery (SIB) chemistry is one of the most promising “beyond‐lithium” energy storage technologies. Herein, the prospects and key challenges for the commercialization of SIBs are discussed. By comparing the technological evolutions of both LIBs and SIBs, key differences between the two battery chemistries are unraveled. Based on outstanding results in power, cyclability, and safety, the path toward SIB commercialization is seen imminent.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Mulder, Grietus
|0 0000-0002-8726-621X
|b 1
700 1 _ |a Danilov, Dmitri L.
|0 P:(DE-Juel1)173719
|b 2
700 1 _ |a Notten, Peter H. L.
|0 P:(DE-Juel1)165918
|b 3
|e Corresponding author
773 _ _ |a 10.1002/aenm.202001310
|g Vol. 10, no. 38, p. 2001310 -
|0 PERI:(DE-600)2594556-7
|n 38
|p 2001310 -
|t Advanced energy materials
|v 10
|y 2020
|x 1614-6840
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/885680/files/aenm.202001310.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/885680/files/aenm.202001310.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:885680
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186070
910 1 _ |a EnergyVille, Genk, Belgium
|0 I:(DE-HGF)0
|b 1
|6 0000-0002-8726-621X
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173719
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165918
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-02-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-02-26
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b ADV ENERGY MATER : 2018
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-26
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-02-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2018
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21