001     885682
005     20240709081911.0
024 7 _ |a 10.1016/j.jmr.2020.106724
|2 doi
024 7 _ |a 0022-2364
|2 ISSN
024 7 _ |a 1090-7807
|2 ISSN
024 7 _ |a 1096-0856
|2 ISSN
024 7 _ |a 1557-8968
|2 ISSN
024 7 _ |a 2128/25927
|2 Handle
024 7 _ |a pmid:32278774
|2 pmid
024 7 _ |a WOS:000536535400005
|2 WOS
037 _ _ |a FZJ-2020-04013
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Überrück, Till
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A compact X-Band ODNP spectrometer towards hyperpolarized 1H spectroscopy
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1603112751_24401
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The demand for compact benchtop NMR systems that can resolve chemical shift differences in the ppm to sub-ppm range is growing. However due to material and size restrictions these magnets are limited in field strength and thus in signal intensity and quality. The implementation of standard hyperpolarization techniques is a next step in an effort to boost the signal. Here we present a compact Overhauser Dynamic Nuclear Polarization (ODNP) setup with a permanent magnet that can resolve 1H chemical shift differences in the ppm range. The assembly of the setup and its components are described in detail, and the functionality of the setup is demonstrated experimentally with ODNP enhanced relaxation measurements yielding a maximal enhancement of −140 for an aqueous 4-hydroxy-TEMPO solution. Additionally, 1H spectroscopic resolution and significant enhancements are demonstrated on acetic acid as a solvent.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Adams, Michael
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Granwehr, Josef
|0 P:(DE-Juel1)162401
|b 2
700 1 _ |a Blümich, Bernhard
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
773 _ _ |a 10.1016/j.jmr.2020.106724
|g Vol. 314, p. 106724 -
|0 PERI:(DE-600)1469665-4
|p 106724 -
|t Journal of magnetic resonance
|v 314
|y 2020
|x 1090-7807
856 4 _ |y Published on 2020-04-02. Available in OpenAccess from 2021-04-02.
|u https://juser.fz-juelich.de/record/885682/files/ODNP_hardware_revision_BB_2.pdf
856 4 _ |y Published on 2020-04-02. Available in OpenAccess from 2021-04-02.
|u https://juser.fz-juelich.de/record/885682/files/ueberrueck_JMR_314_106724_SI.pdf
856 4 _ |y Published on 2020-04-02. Available in OpenAccess from 2021-04-02.
|x pdfa
|u https://juser.fz-juelich.de/record/885682/files/ODNP_hardware_revision_BB_2.pdf?subformat=pdfa
856 4 _ |y Published on 2020-04-02. Available in OpenAccess from 2021-04-02.
|x pdfa
|u https://juser.fz-juelich.de/record/885682/files/ueberrueck_JMR_314_106724_SI.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:885682
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen University
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162401
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)162401
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-10
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MAGN RESON : 2018
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-10
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-10
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21