000885700 001__ 885700
000885700 005__ 20220930130255.0
000885700 0247_ $$2doi$$a10.1063/1.5117503
000885700 0247_ $$2ISSN$$a1070-664X
000885700 0247_ $$2ISSN$$a1089-7674
000885700 0247_ $$2ISSN$$a1527-2419
000885700 0247_ $$2Handle$$a2128/25909
000885700 0247_ $$2altmetric$$aaltmetric:75084226
000885700 0247_ $$2WOS$$aWOS:000518603000002
000885700 037__ $$aFZJ-2020-04024
000885700 082__ $$a530
000885700 1001_ $$0P:(DE-Juel1)171323$$aChitgar, Zahra M.$$b0$$eCorresponding author
000885700 245__ $$aElectron self-injection threshold for the tandem-pulse laser wakefield accelerator
000885700 260__ $$a[S.l.]$$bAmerican Institute of Physics$$c2020
000885700 3367_ $$2DRIVER$$aarticle
000885700 3367_ $$2DataCite$$aOutput Types/Journal article
000885700 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617696135_23215
000885700 3367_ $$2BibTeX$$aARTICLE
000885700 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885700 3367_ $$00$$2EndNote$$aJournal Article
000885700 520__ $$aA controllable injection scheme is key to producing high quality laser-driven electron beams and x rays. Self-injection is the most straightforward scheme leading to high current and peak energies but is susceptible to variations in laser parameters and target characteristics. In this work, improved control of electron self-injection in the nonlinear cavity regime using two laser-pulses propagating in tandem is investigated. In particular, the advantages of the tandem-pulse scheme in terms of injection threshold, electron energy, and beam properties in a regime relevant to betatron radiation are demonstrated. Moreover, it is shown that the laser power threshold for electron self-injection can be reduced by up to a factor of two compared to the standard, single-pulse wakefield scheme.
000885700 536__ $$0G:(DE-HGF)POF3-631$$a631 - Accelerator R & D (POF3-631)$$cPOF3-631$$fPOF III$$x0
000885700 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000885700 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x2
000885700 536__ $$0G:(DE-Juel1)jzam04_20190501$$aKinetic Plasma Simulation with Highly Scalable Particle Codes (jzam04_20190501)$$cjzam04_20190501$$fKinetic Plasma Simulation with Highly Scalable Particle Codes$$x3
000885700 588__ $$aDataset connected to CrossRef
000885700 7001_ $$0P:(DE-Juel1)132115$$aGibbon, Paul$$b1
000885700 7001_ $$0P:(DE-Juel1)166199$$aBöker, Jürgen$$b2$$ufzj
000885700 7001_ $$0P:(DE-Juel1)131234$$aLehrach, Andreas$$b3
000885700 7001_ $$0P:(DE-Juel1)131108$$aBüscher, Markus$$b4
000885700 773__ $$0PERI:(DE-600)1472746-8$$a10.1063/1.5117503$$gVol. 27, no. 2, p. 023106 -$$n2$$p023106 -$$tPhysics of plasmas$$v27$$x1089-7674$$y2020
000885700 8564_ $$uhttps://juser.fz-juelich.de/record/885700/files/1.5117503.pdf$$yOpenAccess
000885700 8564_ $$uhttps://juser.fz-juelich.de/record/885700/files/1.5117503.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885700 8767_ $$82020-01-20$$92020-01-20$$d2020-01-20$$eHybrid-OA$$jZahlung erfolgt$$lKK: Barbers$$zUSD 3500.00
000885700 909CO $$ooai:juser.fz-juelich.de:885700$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000885700 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171323$$aForschungszentrum Jülich$$b0$$kFZJ
000885700 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132115$$aForschungszentrum Jülich$$b1$$kFZJ
000885700 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166199$$aForschungszentrum Jülich$$b2$$kFZJ
000885700 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131234$$aForschungszentrum Jülich$$b3$$kFZJ
000885700 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131108$$aForschungszentrum Jülich$$b4$$kFZJ
000885700 9131_ $$0G:(DE-HGF)POF3-631$$1G:(DE-HGF)POF3-630$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator R & D$$x0
000885700 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000885700 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000885700 9141_ $$y2020
000885700 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-14
000885700 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000885700 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-14
000885700 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS PLASMAS : 2018$$d2020-01-14
000885700 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885700 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-14
000885700 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-14
000885700 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-14$$wger
000885700 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-14
000885700 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-14
000885700 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-14$$wger
000885700 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000885700 9201_ $$0I:(DE-Juel1)IKP-4-20111104$$kIKP-4$$lKernphysikalische Großgeräte$$x1
000885700 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x2
000885700 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000885700 980__ $$ajournal
000885700 980__ $$aVDB
000885700 980__ $$aI:(DE-Juel1)JSC-20090406
000885700 980__ $$aI:(DE-Juel1)IKP-4-20111104
000885700 980__ $$aI:(DE-Juel1)PGI-6-20110106
000885700 980__ $$aI:(DE-82)080012_20140620
000885700 980__ $$aAPC
000885700 980__ $$aUNRESTRICTED
000885700 9801_ $$aAPC
000885700 9801_ $$aFullTexts