001     885700
005     20220930130255.0
024 7 _ |a 10.1063/1.5117503
|2 doi
024 7 _ |a 1070-664X
|2 ISSN
024 7 _ |a 1089-7674
|2 ISSN
024 7 _ |a 1527-2419
|2 ISSN
024 7 _ |a 2128/25909
|2 Handle
024 7 _ |a altmetric:75084226
|2 altmetric
024 7 _ |a WOS:000518603000002
|2 WOS
037 _ _ |a FZJ-2020-04024
082 _ _ |a 530
100 1 _ |a Chitgar, Zahra M.
|0 P:(DE-Juel1)171323
|b 0
|e Corresponding author
245 _ _ |a Electron self-injection threshold for the tandem-pulse laser wakefield accelerator
260 _ _ |a [S.l.]
|c 2020
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1617696135_23215
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A controllable injection scheme is key to producing high quality laser-driven electron beams and x rays. Self-injection is the most straightforward scheme leading to high current and peak energies but is susceptible to variations in laser parameters and target characteristics. In this work, improved control of electron self-injection in the nonlinear cavity regime using two laser-pulses propagating in tandem is investigated. In particular, the advantages of the tandem-pulse scheme in terms of injection threshold, electron energy, and beam properties in a regime relevant to betatron radiation are demonstrated. Moreover, it is shown that the laser power threshold for electron self-injection can be reduced by up to a factor of two compared to the standard, single-pulse wakefield scheme.
536 _ _ |a 631 - Accelerator R & D (POF3-631)
|0 G:(DE-HGF)POF3-631
|c POF3-631
|f POF III
|x 0
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 1
536 _ _ |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
|0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|c PHD-NO-GRANT-20170405
|x 2
536 _ _ |a Kinetic Plasma Simulation with Highly Scalable Particle Codes (jzam04_20190501)
|0 G:(DE-Juel1)jzam04_20190501
|c jzam04_20190501
|f Kinetic Plasma Simulation with Highly Scalable Particle Codes
|x 3
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gibbon, Paul
|0 P:(DE-Juel1)132115
|b 1
700 1 _ |a Böker, Jürgen
|0 P:(DE-Juel1)166199
|b 2
|u fzj
700 1 _ |a Lehrach, Andreas
|0 P:(DE-Juel1)131234
|b 3
700 1 _ |a Büscher, Markus
|0 P:(DE-Juel1)131108
|b 4
773 _ _ |a 10.1063/1.5117503
|g Vol. 27, no. 2, p. 023106 -
|0 PERI:(DE-600)1472746-8
|n 2
|p 023106 -
|t Physics of plasmas
|v 27
|y 2020
|x 1089-7674
856 4 _ |u https://juser.fz-juelich.de/record/885700/files/1.5117503.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/885700/files/1.5117503.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:885700
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171323
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132115
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166199
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131234
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131108
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF3-630
|0 G:(DE-HGF)POF3-631
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v Accelerator R & D
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Computational Science and Mathematical Methods
|x 1
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-14
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-14
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS PLASMAS : 2018
|d 2020-01-14
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-14
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-14
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-01-14
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-14
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-14
|w ger
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)IKP-4-20111104
|k IKP-4
|l Kernphysikalische Großgeräte
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IKP-4-20111104
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21