000885716 001__ 885716
000885716 005__ 20240712112826.0
000885716 0247_ $$2doi$$a10.1021/acsami.1c06771
000885716 0247_ $$2ISSN$$a1944-8244
000885716 0247_ $$2ISSN$$a1944-8252
000885716 0247_ $$2Handle$$a2128/28148
000885716 0247_ $$2altmetric$$aaltmetric:107780744
000885716 0247_ $$2pmid$$a34129331
000885716 0247_ $$2WOS$$aWOS:000670430100091
000885716 037__ $$aFZJ-2020-04028
000885716 082__ $$a600
000885716 1001_ $$0P:(DE-HGF)0$$aHua, Fan$$b0
000885716 245__ $$aUltrathin 2D Fe-Nanosheets Stabilized by 2D Mesoporous Silica: Synthesis and Application in Ammonia Synthesis
000885716 260__ $$aWashington, DC$$bSoc.$$c2021
000885716 3367_ $$2DRIVER$$aarticle
000885716 3367_ $$2DataCite$$aOutput Types/Journal article
000885716 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639728214_20102
000885716 3367_ $$2BibTeX$$aARTICLE
000885716 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885716 3367_ $$00$$2EndNote$$aJournal Article
000885716 520__ $$aDeveloping high-performance Fe-based ammonia catalysts through simple and cost-efficient methods has received an increased level of attention. Herein, we report for the first time, the synthesis of two-dimensional (2D) FeOOH nanoflakes encapsulated by mesoporous SiO2 (mSiO2) via a simple solution-based method for ammonia synthesis. Due to the sticking of the mSiO2 coating layers and the limited spaces in between, the Fe after reduction retains the 2D morphology, showing high resistance against the sintering in the harsh Haber–Bosch process. Compared to supported Fe particles dispersed on mSiO2 spheres, the coated catalyst shows a significantly improved catalytic activity by 50% at 425 °C. Thermal desorption spectroscopy (TDS) reveals the existence of a higher density of reactive sites for N2 activation in the 2D Fe catalyst, which is possibly coupled to a larger density of surface defect sites (kinks, steps, point defects) that are generally considered as active centers in ammonia synthesis. Besides the structural impact of the coating on the 2D Fe, the electronic one is elucidated by partially substituting Si with Al in the coating, confirmed by 29Si and 27Al magic-angle spinning nuclear magnetic resonance (MAS NMR). An increased apparent activation energy (Ea) of the Al-containing catalyst evidences an influence on the nature of the active site. The herein-developed stable 2D Fe nanostructures can serve as an example of a 2D material applied in catalysis, offering the chance of a rational catalyst design based on a stepwise introduction of various promoters, in the coating and on the metal, maintaining the spatial control of the active centers.
000885716 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000885716 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000885716 7001_ $$0P:(DE-HGF)0$$aFolke, Jan Markus$$b1
000885716 7001_ $$0P:(DE-Juel1)172733$$aLiu, Zigeng$$b2
000885716 7001_ $$0P:(DE-HGF)0$$aGirgsdies, Frank$$b3
000885716 7001_ $$0P:(DE-Juel1)144900$$aImlau, Robert$$b4
000885716 7001_ $$0P:(DE-HGF)0$$aRuland, Holger$$b5
000885716 7001_ $$0P:(DE-HGF)0$$aHeumann, Saskia$$b6
000885716 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b7
000885716 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b8
000885716 7001_ $$0P:(DE-HGF)0$$aSchlögl, Robert$$b9
000885716 7001_ $$0P:(DE-HGF)0$$aHuang, Xing$$b10$$eCorresponding author
000885716 7001_ $$0P:(DE-HGF)0$$aFrei, Elias$$b11$$eCorresponding author
000885716 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.1c06771$$gVol. 13, no. 25, p. 30187 - 30197$$n25$$p30187 - 30197$$tACS applied materials & interfaces$$v13$$x1944-8252$$y2021
000885716 8564_ $$uhttps://juser.fz-juelich.de/record/885716/files/Silica%20coated%20FeOOH_20200113%20Hua%20and%20Xing_EF-final%202_ZL_ZL.pdf$$yPublished on 2021-06-15. Available in OpenAccess from 2022-06-15.
000885716 8564_ $$uhttps://juser.fz-juelich.de/record/885716/files/acsami.1c06771.pdf$$yRestricted
000885716 8564_ $$uhttps://juser.fz-juelich.de/record/885716/files/Silica%20coated%20FeOOH_20200113%20Hua%20and%20Xing_EF-final%202_ZL_ZL.pdf?subformat=pdfa$$xpdfa$$yPublished on 2021-06-15. Available in OpenAccess from 2022-06-15.
000885716 909CO $$ooai:juser.fz-juelich.de:885716$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885716 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Max-Planck-Institute Mülheim$$b0
000885716 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Fritz-Haber-Institute Berlin$$b0
000885716 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Max-Planck-Insitute Mülheim$$b1
000885716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172733$$aForschungszentrum Jülich$$b2$$kFZJ
000885716 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172733$$a Max-Planck-Institute Mülheim$$b2
000885716 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Fritz-Haber-Institute Berlin$$b3
000885716 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)144900$$a Thermo Fisher Scientific, Eindhoven$$b4
000885716 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Max-Planck-Institute Mülheim$$b5
000885716 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Max-Planck-Institute, Mülheim$$b6
000885716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b7$$kFZJ
000885716 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b7$$kRWTH
000885716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b8$$kFZJ
000885716 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b8$$kRWTH
000885716 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Max-Planck-Institute Mülheim$$b9
000885716 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Fritz-Haber-Institute Berlin$$b9
000885716 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Max-Planck-Institute Mülheim$$b10
000885716 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Fritz-Haber-Institute Berlin$$b10
000885716 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Scientific Centre for Optical and Electron Microscopy, Zürich$$b10
000885716 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000885716 9141_ $$y2021
000885716 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000885716 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000885716 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30
000885716 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000885716 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000885716 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2019$$d2021-01-30
000885716 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000885716 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000885716 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2019$$d2021-01-30
000885716 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000885716 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000885716 920__ $$lyes
000885716 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000885716 9801_ $$aFullTexts
000885716 980__ $$ajournal
000885716 980__ $$aVDB
000885716 980__ $$aI:(DE-Juel1)IEK-9-20110218
000885716 980__ $$aUNRESTRICTED
000885716 981__ $$aI:(DE-Juel1)IET-1-20110218