Hauptseite > Publikationsdatenbank > Ultrathin 2D Fe-Nanosheets Stabilized by 2D Mesoporous Silica: Synthesis and Application in Ammonia Synthesis > print |
001 | 885716 | ||
005 | 20240712112826.0 | ||
024 | 7 | _ | |a 10.1021/acsami.1c06771 |2 doi |
024 | 7 | _ | |a 1944-8244 |2 ISSN |
024 | 7 | _ | |a 1944-8252 |2 ISSN |
024 | 7 | _ | |a 2128/28148 |2 Handle |
024 | 7 | _ | |a altmetric:107780744 |2 altmetric |
024 | 7 | _ | |a 34129331 |2 pmid |
024 | 7 | _ | |a WOS:000670430100091 |2 WOS |
037 | _ | _ | |a FZJ-2020-04028 |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Hua, Fan |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Ultrathin 2D Fe-Nanosheets Stabilized by 2D Mesoporous Silica: Synthesis and Application in Ammonia Synthesis |
260 | _ | _ | |a Washington, DC |c 2021 |b Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1639728214_20102 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Developing high-performance Fe-based ammonia catalysts through simple and cost-efficient methods has received an increased level of attention. Herein, we report for the first time, the synthesis of two-dimensional (2D) FeOOH nanoflakes encapsulated by mesoporous SiO2 (mSiO2) via a simple solution-based method for ammonia synthesis. Due to the sticking of the mSiO2 coating layers and the limited spaces in between, the Fe after reduction retains the 2D morphology, showing high resistance against the sintering in the harsh Haber–Bosch process. Compared to supported Fe particles dispersed on mSiO2 spheres, the coated catalyst shows a significantly improved catalytic activity by 50% at 425 °C. Thermal desorption spectroscopy (TDS) reveals the existence of a higher density of reactive sites for N2 activation in the 2D Fe catalyst, which is possibly coupled to a larger density of surface defect sites (kinks, steps, point defects) that are generally considered as active centers in ammonia synthesis. Besides the structural impact of the coating on the 2D Fe, the electronic one is elucidated by partially substituting Si with Al in the coating, confirmed by 29Si and 27Al magic-angle spinning nuclear magnetic resonance (MAS NMR). An increased apparent activation energy (Ea) of the Al-containing catalyst evidences an influence on the nature of the active site. The herein-developed stable 2D Fe nanostructures can serve as an example of a 2D material applied in catalysis, offering the chance of a rational catalyst design based on a stepwise introduction of various promoters, in the coating and on the metal, maintaining the spatial control of the active centers. |
536 | _ | _ | |a 1223 - Batteries in Application (POF4-122) |0 G:(DE-HGF)POF4-1223 |c POF4-122 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Folke, Jan Markus |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Liu, Zigeng |0 P:(DE-Juel1)172733 |b 2 |
700 | 1 | _ | |a Girgsdies, Frank |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Imlau, Robert |0 P:(DE-Juel1)144900 |b 4 |
700 | 1 | _ | |a Ruland, Holger |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Heumann, Saskia |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Granwehr, Josef |0 P:(DE-Juel1)162401 |b 7 |
700 | 1 | _ | |a Eichel, Rüdiger-A. |0 P:(DE-Juel1)156123 |b 8 |
700 | 1 | _ | |a Schlögl, Robert |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Huang, Xing |0 P:(DE-HGF)0 |b 10 |e Corresponding author |
700 | 1 | _ | |a Frei, Elias |0 P:(DE-HGF)0 |b 11 |e Corresponding author |
773 | _ | _ | |a 10.1021/acsami.1c06771 |g Vol. 13, no. 25, p. 30187 - 30197 |0 PERI:(DE-600)2467494-1 |n 25 |p 30187 - 30197 |t ACS applied materials & interfaces |v 13 |y 2021 |x 1944-8252 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/885716/files/Silica%20coated%20FeOOH_20200113%20Hua%20and%20Xing_EF-final%202_ZL_ZL.pdf |y Published on 2021-06-15. Available in OpenAccess from 2022-06-15. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/885716/files/acsami.1c06771.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/885716/files/Silica%20coated%20FeOOH_20200113%20Hua%20and%20Xing_EF-final%202_ZL_ZL.pdf?subformat=pdfa |x pdfa |y Published on 2021-06-15. Available in OpenAccess from 2022-06-15. |
909 | C | O | |o oai:juser.fz-juelich.de:885716 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Max-Planck-Institute Mülheim |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Fritz-Haber-Institute Berlin |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Max-Planck-Insitute Mülheim |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)172733 |
910 | 1 | _ | |a Max-Planck-Institute Mülheim |0 I:(DE-HGF)0 |b 2 |6 P:(DE-Juel1)172733 |
910 | 1 | _ | |a Fritz-Haber-Institute Berlin |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Thermo Fisher Scientific, Eindhoven |0 I:(DE-HGF)0 |b 4 |6 P:(DE-Juel1)144900 |
910 | 1 | _ | |a Max-Planck-Institute Mülheim |0 I:(DE-HGF)0 |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Max-Planck-Institute, Mülheim |0 I:(DE-HGF)0 |b 6 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)162401 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 7 |6 P:(DE-Juel1)162401 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)156123 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 8 |6 P:(DE-Juel1)156123 |
910 | 1 | _ | |a Max-Planck-Institute Mülheim |0 I:(DE-HGF)0 |b 9 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Fritz-Haber-Institute Berlin |0 I:(DE-HGF)0 |b 9 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Max-Planck-Institute Mülheim |0 I:(DE-HGF)0 |b 10 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Fritz-Haber-Institute Berlin |0 I:(DE-HGF)0 |b 10 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Scientific Centre for Optical and Electron Microscopy, Zürich |0 I:(DE-HGF)0 |b 10 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1223 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-30 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-30 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ACS APPL MATER INTER : 2019 |d 2021-01-30 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-30 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS APPL MATER INTER : 2019 |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-30 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-9-20110218 |k IEK-9 |l Grundlagen der Elektrochemie |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-9-20110218 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|