001     885716
005     20240712112826.0
024 7 _ |a 10.1021/acsami.1c06771
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a 2128/28148
|2 Handle
024 7 _ |a altmetric:107780744
|2 altmetric
024 7 _ |a 34129331
|2 pmid
024 7 _ |a WOS:000670430100091
|2 WOS
037 _ _ |a FZJ-2020-04028
082 _ _ |a 600
100 1 _ |a Hua, Fan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Ultrathin 2D Fe-Nanosheets Stabilized by 2D Mesoporous Silica: Synthesis and Application in Ammonia Synthesis
260 _ _ |a Washington, DC
|c 2021
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1639728214_20102
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Developing high-performance Fe-based ammonia catalysts through simple and cost-efficient methods has received an increased level of attention. Herein, we report for the first time, the synthesis of two-dimensional (2D) FeOOH nanoflakes encapsulated by mesoporous SiO2 (mSiO2) via a simple solution-based method for ammonia synthesis. Due to the sticking of the mSiO2 coating layers and the limited spaces in between, the Fe after reduction retains the 2D morphology, showing high resistance against the sintering in the harsh Haber–Bosch process. Compared to supported Fe particles dispersed on mSiO2 spheres, the coated catalyst shows a significantly improved catalytic activity by 50% at 425 °C. Thermal desorption spectroscopy (TDS) reveals the existence of a higher density of reactive sites for N2 activation in the 2D Fe catalyst, which is possibly coupled to a larger density of surface defect sites (kinks, steps, point defects) that are generally considered as active centers in ammonia synthesis. Besides the structural impact of the coating on the 2D Fe, the electronic one is elucidated by partially substituting Si with Al in the coating, confirmed by 29Si and 27Al magic-angle spinning nuclear magnetic resonance (MAS NMR). An increased apparent activation energy (Ea) of the Al-containing catalyst evidences an influence on the nature of the active site. The herein-developed stable 2D Fe nanostructures can serve as an example of a 2D material applied in catalysis, offering the chance of a rational catalyst design based on a stepwise introduction of various promoters, in the coating and on the metal, maintaining the spatial control of the active centers.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Folke, Jan Markus
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Liu, Zigeng
|0 P:(DE-Juel1)172733
|b 2
700 1 _ |a Girgsdies, Frank
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Imlau, Robert
|0 P:(DE-Juel1)144900
|b 4
700 1 _ |a Ruland, Holger
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Heumann, Saskia
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Granwehr, Josef
|0 P:(DE-Juel1)162401
|b 7
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 8
700 1 _ |a Schlögl, Robert
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Huang, Xing
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
700 1 _ |a Frei, Elias
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
773 _ _ |a 10.1021/acsami.1c06771
|g Vol. 13, no. 25, p. 30187 - 30197
|0 PERI:(DE-600)2467494-1
|n 25
|p 30187 - 30197
|t ACS applied materials & interfaces
|v 13
|y 2021
|x 1944-8252
856 4 _ |u https://juser.fz-juelich.de/record/885716/files/Silica%20coated%20FeOOH_20200113%20Hua%20and%20Xing_EF-final%202_ZL_ZL.pdf
|y Published on 2021-06-15. Available in OpenAccess from 2022-06-15.
856 4 _ |u https://juser.fz-juelich.de/record/885716/files/acsami.1c06771.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/885716/files/Silica%20coated%20FeOOH_20200113%20Hua%20and%20Xing_EF-final%202_ZL_ZL.pdf?subformat=pdfa
|x pdfa
|y Published on 2021-06-15. Available in OpenAccess from 2022-06-15.
909 C O |o oai:juser.fz-juelich.de:885716
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Max-Planck-Institute Mülheim
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Fritz-Haber-Institute Berlin
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Max-Planck-Insitute Mülheim
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172733
910 1 _ |a Max-Planck-Institute Mülheim
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)172733
910 1 _ |a Fritz-Haber-Institute Berlin
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Thermo Fisher Scientific, Eindhoven
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)144900
910 1 _ |a Max-Planck-Institute Mülheim
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Max-Planck-Institute, Mülheim
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)162401
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 7
|6 P:(DE-Juel1)162401
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 8
|6 P:(DE-Juel1)156123
910 1 _ |a Max-Planck-Institute Mülheim
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-HGF)0
910 1 _ |a Fritz-Haber-Institute Berlin
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-HGF)0
910 1 _ |a Max-Planck-Institute Mülheim
|0 I:(DE-HGF)0
|b 10
|6 P:(DE-HGF)0
910 1 _ |a Fritz-Haber-Institute Berlin
|0 I:(DE-HGF)0
|b 10
|6 P:(DE-HGF)0
910 1 _ |a Scientific Centre for Optical and Electron Microscopy, Zürich
|0 I:(DE-HGF)0
|b 10
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-30
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2019
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21