001     885723
005     20240313103122.0
024 7 _ |a 10.1371/journal.pcbi.1008127
|2 doi
024 7 _ |a 1553-734X
|2 ISSN
024 7 _ |a 1553-7358
|2 ISSN
024 7 _ |a 2128/26730
|2 Handle
024 7 _ |a altmetric:92256983
|2 altmetric
024 7 _ |a 33044953
|2 pmid
024 7 _ |a WOS:000581784900003
|2 WOS
037 _ _ |a FZJ-2020-04035
082 _ _ |a 610
100 1 _ |a Gilson, Matthieu
|0 P:(DE-Juel1)184621
|b 0
|e Corresponding author
|u fzj
245 _ _ |a The covariance perceptron: A new paradigm for classification and processing of time series in recurrent neuronal networks
260 _ _ |a San Francisco, Calif.
|c 2020
|b Public Library of Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1610461054_27206
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Learning in neuronal networks has developed in many directions, in particular to reproduce cognitive tasks like image recognition and speech processing. Implementations have been inspired by stereotypical neuronal responses like tuning curves in the visual system, where, for example, ON/OFF cells fire or not depending on the contrast in their receptive fields. Classical models of neuronal networks therefore map a set of input signals to a set of activity levels in the output of the network. Each category of inputs is thereby predominantly characterized by its mean. In the case of time series, fluctuations around this mean constitute noise in this view. For this paradigm, the high variability exhibited by the cortical activity may thus imply limitations or constraints, which have been discussed for many years. For example, the need for averaging neuronal activity over long periods or large groups of cells to assess a robust mean and to diminish the effect of noise correlations. To reconcile robust computations with variable neuronal activity, we here propose a conceptual change of perspective by employing variability of activity as the basis for stimulus-related information to be learned by neurons, rather than merely being the noise that corrupts the mean signal. In this new paradigm both afferent and recurrent weights in a network are tuned to shape the input-output mapping for covariances, the second-order statistics of the fluctuating activity. When including time lags, covariance patterns define a natural metric for time series that capture their propagating nature. We develop the theory for classification of time series based on their spatio-temporal covariances, which reflect dynamical properties. We demonstrate that recurrent connectivity is able to transform information contained in the temporal structure of the signal into spatial covariances. Finally, we use the MNIST database to show how the covariance perceptron can capture specific second-order statistical patterns generated by moving digits.
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 0
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 1
536 _ _ |a MSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018)
|0 G:(DE-Juel1)HGF-SMHB-2014-2018
|c HGF-SMHB-2014-2018
|f MSNN
|x 2
536 _ _ |a neuroIC002 - Recurrence and stochasticity for neuro-inspired computation (EXS-SF-neuroIC002)
|0 G:(DE-82)EXS-SF-neuroIC002
|c EXS-SF-neuroIC002
|x 3
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 4
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|x 5
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Dahmen, David
|0 P:(DE-Juel1)156459
|b 1
700 1 _ |a Moreno-Bote, Rubén
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Insabato, Andrea
|0 0000-0003-1395-2724
|b 3
700 1 _ |a Helias, Moritz
|0 P:(DE-Juel1)144806
|b 4
773 _ _ |a 10.1371/journal.pcbi.1008127
|g Vol. 16, no. 10, p. e1008127 -
|0 PERI:(DE-600)2193340-6
|n 10
|p e1008127
|t PLoS Computational Biology
|v 16
|y 2020
|x 1553-7358
856 4 _ |u https://juser.fz-juelich.de/record/885723/files/Invoice_PAB307207_1601932356015.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/885723/files/Invoice_PAB307207_1601932356015.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/885723/files/pcbi.1008127.pdf
909 C O |o oai:juser.fz-juelich.de:885723
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)184621
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156459
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144806
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Connectivity and Activity
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Theory, modelling and simulation
|x 1
914 1 _ |y 2020
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS COMPUT BIOL : 2018
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-01-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-05
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-05
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-05
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21