000885724 001__ 885724
000885724 005__ 20240712112826.0
000885724 0247_ $$2doi$$a10.1039/D0GC01717E
000885724 0247_ $$2ISSN$$a1463-9262
000885724 0247_ $$2ISSN$$a1463-9270
000885724 0247_ $$2Handle$$a2128/25905
000885724 0247_ $$2WOS$$aWOS:000571356300033
000885724 037__ $$aFZJ-2020-04036
000885724 041__ $$aEnglish
000885724 082__ $$a540
000885724 1001_ $$0P:(DE-HGF)0$$aDing, Yuxiao$$b0$$eCorresponding author
000885724 245__ $$aTuning regioselective oxidation toward phenol via atomically dispersed iron sites on carbon
000885724 260__ $$aCambridge$$bRSC$$c2020
000885724 3367_ $$2DRIVER$$aarticle
000885724 3367_ $$2DataCite$$aOutput Types/Journal article
000885724 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602847579_16671
000885724 3367_ $$2BibTeX$$aARTICLE
000885724 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885724 3367_ $$00$$2EndNote$$aJournal Article
000885724 520__ $$aThe development of environmentally benign catalysts for highly regioselective hydroxylation of phenol remains an unsolved challenge in both industry and academia because the electrophilic substitution of phenol simultaneously occurs on both ortho- and para-positions. Herein, we report a designed atomically dispersed iron-based heterogeneous catalyst, in which the iron species is coordinated by a functionalized ionic liquid monolayer on carbon nanotubes. The catalyst exhibits an unprecedented level of regioselectivity (>99%) towards the hydroxylation of phenol and displays a much better activity (TOF towards catechol productivity, 1.79 s−1) compared to the homogeneous free ion system (TOF towards catechol productivity, 0.44 s−1). Both experimental and theoretical investigations confirm that the catalytic oxidation with hydroperoxide undergoes a non-radical addition process and substitutes only the ortho-positions of phenol. This finding provides not only a quite active and selective catalyst for industrially very important reactions, but also a promising methodology of designing biomimetic iron-based heterogeneous catalysts at the atomic level.
000885724 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000885724 588__ $$aDataset connected to CrossRef
000885724 7001_ $$00000-0001-7559-7348$$aZhang, Pengfei$$b1
000885724 7001_ $$0P:(DE-HGF)0$$aXiong, Hailong$$b2
000885724 7001_ $$0P:(DE-HGF)0$$aSun, Xiaoyan$$b3
000885724 7001_ $$00000-0003-1305-6911$$aKlyushin, Alexander$$b4
000885724 7001_ $$00000-0002-2607-2999$$aZhang, Bingsen$$b5
000885724 7001_ $$0P:(DE-Juel1)172733$$aLiu, Zigeng$$b6
000885724 7001_ $$00000-0003-4649-6526$$aZhang, Jinshui$$b7
000885724 7001_ $$00000-0002-9962-1661$$aZhu, Huiyuan$$b8
000885724 7001_ $$00000-0001-6064-9360$$aQiao, Zhen-An$$b9
000885724 7001_ $$00000-0003-3594-6392$$aHeumann, Saskia$$b10
000885724 7001_ $$00000-0002-8046-3931$$aDai, Sheng$$b11$$eCorresponding author
000885724 773__ $$0PERI:(DE-600)2006274-6$$a10.1039/D0GC01717E$$gVol. 22, no. 18, p. 6025 - 6032$$n18$$p6025 - 6032$$tGreen chemistry$$v22$$x1463-9270$$y2020
000885724 8564_ $$uhttps://juser.fz-juelich.de/record/885724/files/d0gc01717e.pdf$$yOpenAccess
000885724 8564_ $$uhttps://juser.fz-juelich.de/record/885724/files/d0gc01717e.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885724 909CO $$ooai:juser.fz-juelich.de:885724$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885724 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172733$$aForschungszentrum Jülich$$b6$$kFZJ
000885724 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000885724 9141_ $$y2020
000885724 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000885724 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-02
000885724 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-02
000885724 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-02
000885724 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGREEN CHEM : 2018$$d2020-01-02
000885724 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGREEN CHEM : 2018$$d2020-01-02
000885724 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-02
000885724 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-02
000885724 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-02
000885724 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-02
000885724 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885724 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2020-01-02$$wger
000885724 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-02
000885724 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2020-01-02
000885724 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-02
000885724 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-02$$wger
000885724 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-02
000885724 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-02$$wger
000885724 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-02
000885724 920__ $$lyes
000885724 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000885724 9801_ $$aFullTexts
000885724 980__ $$ajournal
000885724 980__ $$aVDB
000885724 980__ $$aUNRESTRICTED
000885724 980__ $$aI:(DE-Juel1)IEK-9-20110218
000885724 981__ $$aI:(DE-Juel1)IET-1-20110218