000885727 001__ 885727
000885727 005__ 20240712112826.0
000885727 0247_ $$2doi$$a10.1039/D0NR04961A
000885727 0247_ $$2ISSN$$a2040-3364
000885727 0247_ $$2ISSN$$a2040-3372
000885727 0247_ $$2Handle$$a2128/27034
000885727 0247_ $$2altmetric$$aaltmetric:92375374
000885727 0247_ $$2pmid$$a33136106
000885727 0247_ $$2WOS$$aWOS:000589051700022
000885727 037__ $$aFZJ-2020-04039
000885727 041__ $$aEnglish
000885727 082__ $$a600
000885727 1001_ $$0P:(DE-HGF)0$$aBeker, Anne France$$b0$$eCorresponding author
000885727 245__ $$aIn Situ Electrochemistry inside the TEM with Controlled Mass Transport
000885727 260__ $$aCambridge$$bRSC Publ.$$c2020
000885727 3367_ $$2DRIVER$$aarticle
000885727 3367_ $$2DataCite$$aOutput Types/Journal article
000885727 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611593846_9551
000885727 3367_ $$2BibTeX$$aARTICLE
000885727 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885727 3367_ $$00$$2EndNote$$aJournal Article
000885727 520__ $$aThe field of electrochemistry promises solutions for the future energy crisis and environmental deterioration by developing optimized batteries, fuel-cells and catalysts. Combined with in situ transmission electron microscopy (TEM), it can reveal functional and structural changes. A drawback of this relatively young field is lack of reproducibility in controlling the liquid environment while retaining the imaging and analytical capabilities. Here, a platform for in situ electrochemical studies inside a TEM with a pressure-driven flow is presented, with the capability to control the flow direction and to ensure the liquid will always pass through the region of interest. As a result, the system offers the opportunity to define the mass transport and control the electric potential, giving access to the full kinetics of the redox reaction. In order to show the benefits of the system, copper dendrites are electrodeposited and show reliable electric potential control. Next, their morphology is changed by tuning the mass transport conditions. Finally, at a liquid thickness of approximately 100 nm, the diffraction pattern revealed the 〈1,1,1〉 planes of the copper crystals, indicating an atomic resolution down to 2.15 Å. Such control of the liquid thickness enabled elemental mapping, allowing us to distinguish the spatial distribution of different elements in liquid.
000885727 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000885727 588__ $$aDataset connected to CrossRef
000885727 7001_ $$0P:(DE-HGF)0$$aSun, Hongyu$$b1
000885727 7001_ $$0P:(DE-HGF)0$$aLemang, Mathilde$$b2
000885727 7001_ $$0P:(DE-HGF)0$$avan Omme, Johannes Tijn$$b3
000885727 7001_ $$0P:(DE-HGF)0$$aSpruit, Ronald$$b4
000885727 7001_ $$0P:(DE-HGF)0$$aBremmer, G. M.$$b5
000885727 7001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b6
000885727 7001_ $$0P:(DE-HGF)0$$aPerez Garza, Hector Hugo$$b7
000885727 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/D0NR04961A$$gp. 10.1039.D0NR04961A$$n43$$p22192-22201$$tNanoscale$$v12$$x2040-3372$$y2020
000885727 8564_ $$uhttps://juser.fz-juelich.de/record/885727/files/Stream%20LB%20manuscript%20Final%20-%2022sep2020.pdf$$yPublished on 2020-10-14. Available in OpenAccess from 2021-10-14.
000885727 8564_ $$uhttps://juser.fz-juelich.de/record/885727/files/d0nr04961a.pdf$$yRestricted
000885727 909CO $$ooai:juser.fz-juelich.de:885727$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885727 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b6$$kFZJ
000885727 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000885727 9141_ $$y2020
000885727 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27
000885727 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27
000885727 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000885727 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE : 2018$$d2020-02-27
000885727 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE : 2018$$d2020-02-27
000885727 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27
000885727 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-27
000885727 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27
000885727 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-27
000885727 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-27
000885727 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-02-27$$wger
000885727 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000885727 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27
000885727 920__ $$lyes
000885727 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000885727 9801_ $$aFullTexts
000885727 980__ $$ajournal
000885727 980__ $$aVDB
000885727 980__ $$aUNRESTRICTED
000885727 980__ $$aI:(DE-Juel1)IEK-9-20110218
000885727 981__ $$aI:(DE-Juel1)IET-1-20110218