000885729 001__ 885729
000885729 005__ 20210130010506.0
000885729 0247_ $$2doi$$a10.3389/fbioe.2020.584614
000885729 0247_ $$2Handle$$a2128/25904
000885729 0247_ $$2pmid$$apmid:33178676
000885729 0247_ $$2WOS$$aWOS:000584724900001
000885729 037__ $$aFZJ-2020-04041
000885729 082__ $$a570
000885729 1001_ $$0P:(DE-HGF)0$$aGraf, Michaela$$b0
000885729 245__ $$aRevisiting the growth modulon of Corynebacterium glutamicum under glucose limited chemostat conditions
000885729 260__ $$aLausanne$$bFrontiers Media$$c2020
000885729 3367_ $$2DRIVER$$aarticle
000885729 3367_ $$2DataCite$$aOutput Types/Journal article
000885729 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602846662_16749
000885729 3367_ $$2BibTeX$$aARTICLE
000885729 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885729 3367_ $$00$$2EndNote$$aJournal Article
000885729 520__ $$aIncreasing the growth rate of the industrial host Corynebacterium glutamicum is a promising target to rise productivities of growth coupled product formation. As a prerequisite, detailed knowledge about the tight regulation network is necessary for identifying promising metabolic engineering goals. Here, we present comprehensive metabolic and transcriptional analysis of C. glutamicum ATCC 13032 growing under glucose limited chemostat conditions with μ = 0.2, 0.3, and 0.4 h–1. Intermediates of central metabolism mostly showed rising pool sizes with increasing growth. 13C-metabolic flux analysis (13C-MFA) underlined the fundamental role of central metabolism for the supply of precursors, redox, and energy equivalents. Global, growth-associated, concerted transcriptional patterns were not detected giving rise to the conclusion that glycolysis, pentose-phosphate pathway, and citric acid cycle are predominately metabolically controlled under glucose-limiting chemostat conditions. However, evidence is found that transcriptional regulation takes control over glycolysis once glucose-rich growth conditions are installed.
000885729 536__ $$0G:(DE-HGF)POF3-581$$a581 - Biotechnology (POF3-581)$$cPOF3-581$$fPOF III$$x0
000885729 588__ $$aDataset connected to CrossRef
000885729 7001_ $$0P:(DE-HGF)0$$aHaas, Thorsten$$b1
000885729 7001_ $$0P:(DE-HGF)0$$aTeleki, Attila$$b2
000885729 7001_ $$0P:(DE-HGF)0$$aFeith, André$$b3
000885729 7001_ $$0P:(DE-Juel1)167260$$aCerff, Martin$$b4
000885729 7001_ $$0P:(DE-Juel1)129076$$aWiechert, Wolfgang$$b5$$ufzj
000885729 7001_ $$0P:(DE-Juel1)129051$$aNöh, Katharina$$b6$$ufzj
000885729 7001_ $$0P:(DE-HGF)0$$aBusche, Tobias$$b7
000885729 7001_ $$0P:(DE-HGF)0$$aKalinowski, Jörn$$b8
000885729 7001_ $$0P:(DE-HGF)0$$aTakors, Ralf$$b9$$eCorresponding author
000885729 773__ $$0PERI:(DE-600)2719493-0$$a10.3389/fbioe.2020.584614$$gVol. 8, p. 584614$$p584614$$tFrontiers in Bioengineering and Biotechnology$$v8$$x2296-4185$$y2020
000885729 8564_ $$uhttps://juser.fz-juelich.de/record/885729/files/fbioe-08-584614.pdf$$yOpenAccess
000885729 8564_ $$uhttps://juser.fz-juelich.de/record/885729/files/fbioe-08-584614.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885729 909CO $$ooai:juser.fz-juelich.de:885729$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885729 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129076$$aForschungszentrum Jülich$$b5$$kFZJ
000885729 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129051$$aForschungszentrum Jülich$$b6$$kFZJ
000885729 9131_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x0
000885729 9141_ $$y2020
000885729 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-14
000885729 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-14
000885729 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-14
000885729 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-14
000885729 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000885729 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT BIOENG BIOTECH : 2018$$d2020-01-14
000885729 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-14
000885729 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-14
000885729 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-14
000885729 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-14
000885729 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-14
000885729 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885729 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-14
000885729 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-14
000885729 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFRONT BIOENG BIOTECH : 2018$$d2020-01-14
000885729 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-14
000885729 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-14
000885729 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-14
000885729 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-14
000885729 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-14
000885729 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000885729 980__ $$ajournal
000885729 980__ $$aVDB
000885729 980__ $$aUNRESTRICTED
000885729 980__ $$aI:(DE-Juel1)IBG-1-20101118
000885729 9801_ $$aFullTexts