Home > Publications database > Revisiting the growth modulon of Corynebacterium glutamicum under glucose limited chemostat conditions > print |
001 | 885729 | ||
005 | 20210130010506.0 | ||
024 | 7 | _ | |a 10.3389/fbioe.2020.584614 |2 doi |
024 | 7 | _ | |a 2128/25904 |2 Handle |
024 | 7 | _ | |a pmid:33178676 |2 pmid |
024 | 7 | _ | |a WOS:000584724900001 |2 WOS |
037 | _ | _ | |a FZJ-2020-04041 |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Graf, Michaela |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Revisiting the growth modulon of Corynebacterium glutamicum under glucose limited chemostat conditions |
260 | _ | _ | |a Lausanne |c 2020 |b Frontiers Media |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1602846662_16749 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Increasing the growth rate of the industrial host Corynebacterium glutamicum is a promising target to rise productivities of growth coupled product formation. As a prerequisite, detailed knowledge about the tight regulation network is necessary for identifying promising metabolic engineering goals. Here, we present comprehensive metabolic and transcriptional analysis of C. glutamicum ATCC 13032 growing under glucose limited chemostat conditions with μ = 0.2, 0.3, and 0.4 h–1. Intermediates of central metabolism mostly showed rising pool sizes with increasing growth. 13C-metabolic flux analysis (13C-MFA) underlined the fundamental role of central metabolism for the supply of precursors, redox, and energy equivalents. Global, growth-associated, concerted transcriptional patterns were not detected giving rise to the conclusion that glycolysis, pentose-phosphate pathway, and citric acid cycle are predominately metabolically controlled under glucose-limiting chemostat conditions. However, evidence is found that transcriptional regulation takes control over glycolysis once glucose-rich growth conditions are installed. |
536 | _ | _ | |a 581 - Biotechnology (POF3-581) |0 G:(DE-HGF)POF3-581 |c POF3-581 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Haas, Thorsten |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Teleki, Attila |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Feith, André |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Cerff, Martin |0 P:(DE-Juel1)167260 |b 4 |
700 | 1 | _ | |a Wiechert, Wolfgang |0 P:(DE-Juel1)129076 |b 5 |u fzj |
700 | 1 | _ | |a Nöh, Katharina |0 P:(DE-Juel1)129051 |b 6 |u fzj |
700 | 1 | _ | |a Busche, Tobias |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Kalinowski, Jörn |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Takors, Ralf |0 P:(DE-HGF)0 |b 9 |e Corresponding author |
773 | _ | _ | |a 10.3389/fbioe.2020.584614 |g Vol. 8, p. 584614 |0 PERI:(DE-600)2719493-0 |p 584614 |t Frontiers in Bioengineering and Biotechnology |v 8 |y 2020 |x 2296-4185 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/885729/files/fbioe-08-584614.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/885729/files/fbioe-08-584614.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:885729 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)129076 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)129051 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Key Technologies for the Bioeconomy |1 G:(DE-HGF)POF3-580 |0 G:(DE-HGF)POF3-581 |2 G:(DE-HGF)POF3-500 |v Biotechnology |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2020-01-14 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b FRONT BIOENG BIOTECH : 2018 |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2020-01-14 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-14 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-14 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2020-01-14 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |f 2020-01-14 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b FRONT BIOENG BIOTECH : 2018 |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-14 |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-1-20101118 |k IBG-1 |l Biotechnologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBG-1-20101118 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|