000885730 001__ 885730
000885730 005__ 20240313103122.0
000885730 0247_ $$2doi$$a10.1101/2020.07.15.205013
000885730 0247_ $$2Handle$$a2128/25923
000885730 0247_ $$2altmetric$$aaltmetric:85888417
000885730 037__ $$aFZJ-2020-04042
000885730 1001_ $$0P:(DE-Juel1)156459$$aDahmen, David$$b0$$eCorresponding author
000885730 245__ $$aLong-range coordination patterns in cortex change with behavioral context
000885730 260__ $$c2020
000885730 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1603106810_18848
000885730 3367_ $$2ORCID$$aWORKING_PAPER
000885730 3367_ $$028$$2EndNote$$aElectronic Article
000885730 3367_ $$2DRIVER$$apreprint
000885730 3367_ $$2BibTeX$$aARTICLE
000885730 3367_ $$2DataCite$$aOutput Types/Working Paper
000885730 520__ $$aCortical connectivity mostly stems from local axonal arborizations, suggesting coordination is strongest between nearby neurons in the range of a few hundred micrometers. Yet multi-electrode recordings of resting-state activity in macaque motor cortex show strong positive and negative spike-count covariances between neurons that are millimeters apart. Here we show that such covariance patterns naturally arise in balanced network models operating close to an instability where neurons interact via indirect connections, giving rise to long-range correlations despite short-range connections. A quantitative theory explains the observed shallow exponential decay of the width of the covariance distribution at long distances. Long-range cooperation via this mechanism is not imprinted in specific connectivity structures but rather results dynamically from the network state. As a consequence, neuronal coordination patterns are not static but can change in a state-dependent manner, which we demonstrate by comparing different behavioral epochs of a reach-to-grasp experiment.
000885730 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000885730 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x1
000885730 536__ $$0G:(DE-Juel1)HGF-SMHB-2014-2018$$aMSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018)$$cHGF-SMHB-2014-2018$$fMSNN$$x2
000885730 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x3
000885730 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$x4
000885730 588__ $$aDataset connected to CrossRef
000885730 7001_ $$0P:(DE-Juel1)174497$$aLayer, Moritz$$b1$$ufzj
000885730 7001_ $$0P:(DE-Juel1)168574$$aDeutz, Lukas$$b2
000885730 7001_ $$0P:(DE-Juel1)171408$$aDąbrowska, Paulina Anna$$b3
000885730 7001_ $$0P:(DE-Juel1)168479$$aVoges, Nicole$$b4
000885730 7001_ $$0P:(DE-Juel1)171972$$avon Papen, Michael$$b5
000885730 7001_ $$00000-0001-6948-1234$$aBrochier, Thomas$$b6
000885730 7001_ $$0P:(DE-Juel1)172858$$aRiehle, Alexa$$b7
000885730 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b8
000885730 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b9$$ufzj
000885730 7001_ $$0P:(DE-Juel1)144806$$aHelias, Moritz$$b10
000885730 773__ $$a10.1101/2020.07.15.205013
000885730 8564_ $$uhttps://www.biorxiv.org/content/10.1101/2020.07.15.205013v1
000885730 8564_ $$uhttps://juser.fz-juelich.de/record/885730/files/2020.07.15.205013v1.full.pdf$$yOpenAccess
000885730 8564_ $$uhttps://juser.fz-juelich.de/record/885730/files/2020.07.15.205013v1.full.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885730 909CO $$ooai:juser.fz-juelich.de:885730$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000885730 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156459$$aForschungszentrum Jülich$$b0$$kFZJ
000885730 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174497$$aForschungszentrum Jülich$$b1$$kFZJ
000885730 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172858$$aForschungszentrum Jülich$$b7$$kFZJ
000885730 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b8$$kFZJ
000885730 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b9$$kFZJ
000885730 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144806$$aForschungszentrum Jülich$$b10$$kFZJ
000885730 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000885730 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1
000885730 9141_ $$y2020
000885730 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885730 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000885730 920__ $$lyes
000885730 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000885730 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000885730 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000885730 9801_ $$aFullTexts
000885730 980__ $$apreprint
000885730 980__ $$aVDB
000885730 980__ $$aUNRESTRICTED
000885730 980__ $$aI:(DE-Juel1)INM-6-20090406
000885730 980__ $$aI:(DE-Juel1)IAS-6-20130828
000885730 980__ $$aI:(DE-Juel1)INM-10-20170113
000885730 981__ $$aI:(DE-Juel1)IAS-6-20130828