001     885730
005     20240313103122.0
024 7 _ |a 10.1101/2020.07.15.205013
|2 doi
024 7 _ |a 2128/25923
|2 Handle
024 7 _ |a altmetric:85888417
|2 altmetric
037 _ _ |a FZJ-2020-04042
100 1 _ |a Dahmen, David
|0 P:(DE-Juel1)156459
|b 0
|e Corresponding author
245 _ _ |a Long-range coordination patterns in cortex change with behavioral context
260 _ _ |c 2020
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1603106810_18848
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Cortical connectivity mostly stems from local axonal arborizations, suggesting coordination is strongest between nearby neurons in the range of a few hundred micrometers. Yet multi-electrode recordings of resting-state activity in macaque motor cortex show strong positive and negative spike-count covariances between neurons that are millimeters apart. Here we show that such covariance patterns naturally arise in balanced network models operating close to an instability where neurons interact via indirect connections, giving rise to long-range correlations despite short-range connections. A quantitative theory explains the observed shallow exponential decay of the width of the covariance distribution at long distances. Long-range cooperation via this mechanism is not imprinted in specific connectivity structures but rather results dynamically from the network state. As a consequence, neuronal coordination patterns are not static but can change in a state-dependent manner, which we demonstrate by comparing different behavioral epochs of a reach-to-grasp experiment.
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 0
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 1
536 _ _ |a MSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018)
|0 G:(DE-Juel1)HGF-SMHB-2014-2018
|c HGF-SMHB-2014-2018
|f MSNN
|x 2
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 3
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|x 4
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Layer, Moritz
|0 P:(DE-Juel1)174497
|b 1
|u fzj
700 1 _ |a Deutz, Lukas
|0 P:(DE-Juel1)168574
|b 2
700 1 _ |a Dąbrowska, Paulina Anna
|0 P:(DE-Juel1)171408
|b 3
700 1 _ |a Voges, Nicole
|0 P:(DE-Juel1)168479
|b 4
700 1 _ |a von Papen, Michael
|0 P:(DE-Juel1)171972
|b 5
700 1 _ |a Brochier, Thomas
|0 0000-0001-6948-1234
|b 6
700 1 _ |a Riehle, Alexa
|0 P:(DE-Juel1)172858
|b 7
700 1 _ |a Diesmann, Markus
|0 P:(DE-Juel1)144174
|b 8
700 1 _ |a Grün, Sonja
|0 P:(DE-Juel1)144168
|b 9
|u fzj
700 1 _ |a Helias, Moritz
|0 P:(DE-Juel1)144806
|b 10
773 _ _ |a 10.1101/2020.07.15.205013
856 4 _ |u https://www.biorxiv.org/content/10.1101/2020.07.15.205013v1
856 4 _ |u https://juser.fz-juelich.de/record/885730/files/2020.07.15.205013v1.full.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/885730/files/2020.07.15.205013v1.full.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:885730
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156459
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174497
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)172858
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)144174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)144168
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)144806
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21