000885753 001__ 885753
000885753 005__ 20240709081913.0
000885753 0247_ $$2doi$$a10.1063/1.5139541
000885753 0247_ $$2ISSN$$a0021-9606
000885753 0247_ $$2ISSN$$a1089-7690
000885753 0247_ $$2ISSN$$a1520-9032
000885753 0247_ $$2Handle$$a2128/25941
000885753 0247_ $$2altmetric$$aaltmetric:76985075
000885753 0247_ $$2pmid$$apmid:32113335
000885753 0247_ $$2WOS$$aWOS:000519832600003
000885753 037__ $$aFZJ-2020-04065
000885753 082__ $$a530
000885753 1001_ $$00000-0002-3513-1591$$aMatse, Mpumelelo$$b0$$eCorresponding author
000885753 245__ $$aAsymmetric double-layer charging in a cylindrical nanopore under closed confinement
000885753 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2020
000885753 3367_ $$2DRIVER$$aarticle
000885753 3367_ $$2DataCite$$aOutput Types/Journal article
000885753 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1603202005_2611
000885753 3367_ $$2BibTeX$$aARTICLE
000885753 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885753 3367_ $$00$$2EndNote$$aJournal Article
000885753 520__ $$aThis article presents a physical–mathematical treatment and numerical simulations of electric double layer charging in a closed, finite, and cylindrical nanopore of circular cross section, embedded in a polymeric host with charged walls and sealed at both ends by metal electrodes under an external voltage bias. Modified Poisson–Nernst–Planck equations were used to account for finite ion sizes, subject to an electroneutrality condition. The time evolution of the formation and relaxation of the double layers was explored. Moreover, equilibrium ion distributions and differential capacitance curves were investigated as functions of the pore surface charge density, electrolyte concentration, ion sizes, and pore size. Asymmetric properties of the differential capacitance curves reveal that the structure of the double layer near each electrode is controlled by the charge concentration along the pore surface and by charge asymmetry in the electrolyte. These results carry implications for accurately simulating cylindrical capacitors and electroactuators.
000885753 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000885753 588__ $$aDataset connected to CrossRef
000885753 7001_ $$0P:(DE-HGF)0$$aBerg, Peter$$b1
000885753 7001_ $$0P:(DE-Juel1)178034$$aEikerling, Michael$$b2
000885753 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.5139541$$gVol. 152, no. 8, p. 084103 -$$n8$$p084103 -$$tThe journal of chemical physics$$v152$$x1089-7690$$y2020
000885753 8564_ $$uhttps://juser.fz-juelich.de/record/885753/files/1.5139541.pdf$$yPublished on 2020-02-24. Available in OpenAccess from 2021-02-24.
000885753 8564_ $$uhttps://juser.fz-juelich.de/record/885753/files/1.5139541.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-02-24. Available in OpenAccess from 2021-02-24.
000885753 909CO $$ooai:juser.fz-juelich.de:885753$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885753 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178034$$aForschungszentrum Jülich$$b2$$kFZJ
000885753 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000885753 9141_ $$y2020
000885753 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-17
000885753 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-17
000885753 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-17
000885753 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000885753 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-17
000885753 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-17
000885753 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-17
000885753 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-17
000885753 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-17
000885753 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-17
000885753 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2018$$d2020-01-17
000885753 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-17
000885753 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-17$$wger
000885753 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-17
000885753 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-17
000885753 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-17$$wger
000885753 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-17
000885753 920__ $$lyes
000885753 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
000885753 9801_ $$aFullTexts
000885753 980__ $$ajournal
000885753 980__ $$aVDB
000885753 980__ $$aUNRESTRICTED
000885753 980__ $$aI:(DE-Juel1)IEK-13-20190226
000885753 981__ $$aI:(DE-Juel1)IET-3-20190226