Home > Publications database > Asymmetric double-layer charging in a cylindrical nanopore under closed confinement > print |
001 | 885753 | ||
005 | 20240709081913.0 | ||
024 | 7 | _ | |a 10.1063/1.5139541 |2 doi |
024 | 7 | _ | |a 0021-9606 |2 ISSN |
024 | 7 | _ | |a 1089-7690 |2 ISSN |
024 | 7 | _ | |a 1520-9032 |2 ISSN |
024 | 7 | _ | |a 2128/25941 |2 Handle |
024 | 7 | _ | |a altmetric:76985075 |2 altmetric |
024 | 7 | _ | |a pmid:32113335 |2 pmid |
024 | 7 | _ | |a WOS:000519832600003 |2 WOS |
037 | _ | _ | |a FZJ-2020-04065 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Matse, Mpumelelo |0 0000-0002-3513-1591 |b 0 |e Corresponding author |
245 | _ | _ | |a Asymmetric double-layer charging in a cylindrical nanopore under closed confinement |
260 | _ | _ | |a Melville, NY |c 2020 |b American Institute of Physics |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1603202005_2611 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a This article presents a physical–mathematical treatment and numerical simulations of electric double layer charging in a closed, finite, and cylindrical nanopore of circular cross section, embedded in a polymeric host with charged walls and sealed at both ends by metal electrodes under an external voltage bias. Modified Poisson–Nernst–Planck equations were used to account for finite ion sizes, subject to an electroneutrality condition. The time evolution of the formation and relaxation of the double layers was explored. Moreover, equilibrium ion distributions and differential capacitance curves were investigated as functions of the pore surface charge density, electrolyte concentration, ion sizes, and pore size. Asymmetric properties of the differential capacitance curves reveal that the structure of the double layer near each electrode is controlled by the charge concentration along the pore surface and by charge asymmetry in the electrolyte. These results carry implications for accurately simulating cylindrical capacitors and electroactuators. |
536 | _ | _ | |a 113 - Methods and Concepts for Material Development (POF3-113) |0 G:(DE-HGF)POF3-113 |c POF3-113 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Berg, Peter |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Eikerling, Michael |0 P:(DE-Juel1)178034 |b 2 |
773 | _ | _ | |a 10.1063/1.5139541 |g Vol. 152, no. 8, p. 084103 - |0 PERI:(DE-600)1473050-9 |n 8 |p 084103 - |t The journal of chemical physics |v 152 |y 2020 |x 1089-7690 |
856 | 4 | _ | |y Published on 2020-02-24. Available in OpenAccess from 2021-02-24. |u https://juser.fz-juelich.de/record/885753/files/1.5139541.pdf |
856 | 4 | _ | |y Published on 2020-02-24. Available in OpenAccess from 2021-02-24. |x pdfa |u https://juser.fz-juelich.de/record/885753/files/1.5139541.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:885753 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)178034 |
913 | 1 | _ | |a DE-HGF |l Energieeffizienz, Materialien und Ressourcen |1 G:(DE-HGF)POF3-110 |0 G:(DE-HGF)POF3-113 |2 G:(DE-HGF)POF3-100 |v Methods and Concepts for Material Development |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-01-17 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-17 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-17 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-17 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-17 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-01-17 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CHEM PHYS : 2018 |d 2020-01-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-01-17 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2020-01-17 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2020-01-17 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-01-17 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-17 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-13-20190226 |k IEK-13 |l IEK-13 |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-13-20190226 |
981 | _ | _ | |a I:(DE-Juel1)IET-3-20190226 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|