Hauptseite > Publikationsdatenbank > Momentum-dependence in the infinitesimal Wilsonian renormalization group > print |
001 | 885756 | ||
005 | 20240313094848.0 | ||
024 | 7 | _ | |a 10.1088/1751-8121/abb169 |2 doi |
024 | 7 | _ | |a 0022-3689 |2 ISSN |
024 | 7 | _ | |a 0301-0015 |2 ISSN |
024 | 7 | _ | |a 0305-4470 |2 ISSN |
024 | 7 | _ | |a 1361-6447 |2 ISSN |
024 | 7 | _ | |a 1751-8113 |2 ISSN |
024 | 7 | _ | |a 1751-8121 |2 ISSN |
024 | 7 | _ | |a 2051-2155 |2 ISSN |
024 | 7 | _ | |a 2051-2163 |2 ISSN |
024 | 7 | _ | |a 2128/25921 |2 Handle |
024 | 7 | _ | |a WOS:000576613600001 |2 WOS |
037 | _ | _ | |a FZJ-2020-04068 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Helias, Moritz |0 P:(DE-Juel1)144806 |b 0 |e Corresponding author |
245 | _ | _ | |a Momentum-dependence in the infinitesimal Wilsonian renormalization group |
260 | _ | _ | |a Bristol |c 2020 |b IOP Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1603097055_22881 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Wilson's original formulation of the renormalization group is perturbative in nature. We here present an alternative derivation of the infinitesimal momentum shell renormalization group, akin to the Wegner and Houghton scheme, that is a priori exact. We show that the momentum-dependence of vertices is key to obtain a diagrammatic framework that has the same one-loop structure as the vertex expansion of the Wetterich equation. Momentum dependence leads to a delayed functional differential equation in the cutoff parameter. Approximations are then made at two points: truncation of the vertex expansion and approximating the functional form of the momentum dependence by a momentum-scale expansion. We exemplify the method on the scalar phiv4-theory, computing analytically the Wilson–Fisher fixed point, its anomalous dimension η(d) and the critical exponent ν(d) non-perturbatively in d ∈ [3, 4] dimensions. The results are in reasonable agreement with the known values, despite the simplicity of the method. |
536 | _ | _ | |a 574 - Theory, modelling and simulation (POF3-574) |0 G:(DE-HGF)POF3-574 |c POF3-574 |f POF III |x 0 |
536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |f H2020-SGA-FETFLAG-HBP-2017 |x 1 |
536 | _ | _ | |0 G:(DE-82)EXS-SF-neuroIC002 |x 2 |c EXS-SF-neuroIC002 |a neuroIC002 - Recurrence and stochasticity for neuro-inspired computation (EXS-SF-neuroIC002) |
536 | _ | _ | |a RenormalizedFlows - Transparent Deep Learning with Renormalized Flows (BMBF-01IS19077A) |0 G:(DE-Juel-1)BMBF-01IS19077A |c BMBF-01IS19077A |x 3 |
588 | _ | _ | |a Dataset connected to CrossRef |
773 | _ | _ | |a 10.1088/1751-8121/abb169 |g Vol. 53, no. 44, p. 445004 - |0 PERI:(DE-600)1363010-6 |n 44 |p 445004 - |t Journal of physics / A |v 53 |y 2020 |x 1751-8121 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/885756/files/Helias_2020_J._Phys._A%20_Math._Theor._53_445004.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/885756/files/Helias_2020_J._Phys._A%20_Math._Theor._53_445004.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:885756 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)144806 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |2 G:(DE-HGF)POF3-500 |v Theory, modelling and simulation |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-02-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-02-27 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-02-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-02-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-02-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-02-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-02-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-02-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-02-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J PHYS A-MATH THEOR : 2018 |d 2020-02-27 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2020-02-27 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-02-27 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-02-27 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-02-27 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|