001     885756
005     20240313094848.0
024 7 _ |a 10.1088/1751-8121/abb169
|2 doi
024 7 _ |a 0022-3689
|2 ISSN
024 7 _ |a 0301-0015
|2 ISSN
024 7 _ |a 0305-4470
|2 ISSN
024 7 _ |a 1361-6447
|2 ISSN
024 7 _ |a 1751-8113
|2 ISSN
024 7 _ |a 1751-8121
|2 ISSN
024 7 _ |a 2051-2155
|2 ISSN
024 7 _ |a 2051-2163
|2 ISSN
024 7 _ |a 2128/25921
|2 Handle
024 7 _ |a WOS:000576613600001
|2 WOS
037 _ _ |a FZJ-2020-04068
082 _ _ |a 530
100 1 _ |a Helias, Moritz
|0 P:(DE-Juel1)144806
|b 0
|e Corresponding author
245 _ _ |a Momentum-dependence in the infinitesimal Wilsonian renormalization group
260 _ _ |a Bristol
|c 2020
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1603097055_22881
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Wilson's original formulation of the renormalization group is perturbative in nature. We here present an alternative derivation of the infinitesimal momentum shell renormalization group, akin to the Wegner and Houghton scheme, that is a priori exact. We show that the momentum-dependence of vertices is key to obtain a diagrammatic framework that has the same one-loop structure as the vertex expansion of the Wetterich equation. Momentum dependence leads to a delayed functional differential equation in the cutoff parameter. Approximations are then made at two points: truncation of the vertex expansion and approximating the functional form of the momentum dependence by a momentum-scale expansion. We exemplify the method on the scalar phiv4-theory, computing analytically the Wilson–Fisher fixed point, its anomalous dimension η(d) and the critical exponent ν(d) non-perturbatively in d ∈ [3, 4] dimensions. The results are in reasonable agreement with the known values, despite the simplicity of the method.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 1
536 _ _ |0 G:(DE-82)EXS-SF-neuroIC002
|x 2
|c EXS-SF-neuroIC002
|a neuroIC002 - Recurrence and stochasticity for neuro-inspired computation (EXS-SF-neuroIC002)
536 _ _ |a RenormalizedFlows - Transparent Deep Learning with Renormalized Flows (BMBF-01IS19077A)
|0 G:(DE-Juel-1)BMBF-01IS19077A
|c BMBF-01IS19077A
|x 3
588 _ _ |a Dataset connected to CrossRef
773 _ _ |a 10.1088/1751-8121/abb169
|g Vol. 53, no. 44, p. 445004 -
|0 PERI:(DE-600)1363010-6
|n 44
|p 445004 -
|t Journal of physics / A
|v 53
|y 2020
|x 1751-8121
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/885756/files/Helias_2020_J._Phys._A%20_Math._Theor._53_445004.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/885756/files/Helias_2020_J._Phys._A%20_Math._Theor._53_445004.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:885756
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144806
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-02-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-02-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS A-MATH THEOR : 2018
|d 2020-02-27
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-02-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-02-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21