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Interaction between hippocampal sharp-wave ripples (SWRs) and UP states,

possibly by coordinated reactivation of memory traces, is conjectured to

play an important role in memory consolidation. Recently, it was reported

that SWRs were differentiated into multiple subtypes. However, whether

cortical UP states can also be classified into subtypes is not known. Here,

we analysed neural ensemble activity from the medial prefrontal cortex from

rats trained to run a spatial sequence-memory task. Application of the

hiddenMarkovmodel (HMM)with three states to epochs of UP–DOWNoscil-

lations identifiedDOWNstates and two subtypes of UP state (UP-1 andUP-2).

The twoUP subtypeswere distinguished by differences in duration, with UP-1

having a longer duration than UP-2, as well as differences in the speed of

population vector (PV) decorrelation, with UP-1 decorrelating more slowly

than UP-2. Reactivation of recent memory sequences predominantly occurred

in UP-2. Short-duration reactivating UP states were dominated by UP-2

whereas long-duration ones exhibit transitions from UP-1 to UP-2. Thus,

recent memory reactivation, if it occurred within long-duration UP states,

typically was preceded by a period of slow PV evolution not related to

recent experience, and which we speculate may be related to previously

encoded information. If that is the case, then the transition from UP-1 to UP-

2 subtypesmay help gradual integration of recent experiencewith pre-existing

cortical memories by interleaving the two in the same UP state.

This article is part of the Theo Murphy meeting issue ‘Memory

reactivation: replaying events past, present and future’.

1. Introduction
According to standard consolidation theory, coordinated reactivation of recent

memory traces in the hippocampus [1] and cortex [2,3] is part of the mechanism

by which memories of recent experiences are consolidated into partially

abstracted, long-term memory. The first supporting evidence for such coordi-

nation came from multi-electrode recordings from freely behaving rats that

showed simultaneous reactivation of patterns corresponding to the same experi-

ence in the cortex and hippocampus during slow-wave sleep (SWS) [2,4]. In

another multisite neuronal recording study, pyramidal cells in the deep layers

of medial prefrontal cortex (mPFC), where most of the hippocampal fibres

make contact, responded phasically to sharp-wave ripples (SWRs), but not

during spindles [5]. These findings suggest that there is a window of information

transfer between the hippocampus and the neocortex during SWS. Furthermore, a

© 2020 The Author(s) Published by the Royal Society. All rights reserved.



recent electrophysiological study of rat auditory cortex (AC)

and hippocampus found closed-loop activity between AC

and hippocampus during SWS; activity in AC preceded and

predicted the subsequent hippocampal activity, while

hippocampal patterns predicted subsequent AC activity [6].

In the past couple of decades, hippocampal memory reacti-

vation has been studied extensively. First a selective increase in

the firing rate of rat place cells that hadbeen allowed to be active

in their place field was found during subsequent sleep [7]. This

finding showed that the elevated activity of a single neuron can

be maintained during subsequent sleep. From Hebb’s cell

assembly perspective (neurons that fire together wire together)

[8], it is also crucial to ask whether cell-pair correlations that

were established during waking are maintained during sub-

sequent sleep. Wilson & McNaughton [1] showed that

increased correlationsduring taskweremaintainedduringsub-

sequent SWS. Further studies showed that these correlations

were more pronounced during SWRs and that they decayed

to a statistically undetectable level in about 30 min, at least in

hippocampus [9–11] (but also see a recent report [12]). It was

also found that sequence-memory replay was temporally com-

pressed [13,14] and that, during SWRs in quiet wakefulness,

hippocampal sequences are sometimes replayed in reverse

order [15]. Thus, SWRs are the prime neural states inwhich hip-

pocampal memory reactivation occurs. Recently, simultaneous

electrophysiological and imaging recording of rhesusmonkeys

revealed that SWRswere differentiated into four subtypes [16].

These subtypes triggered different brain-wide dynamical

events, suggesting that they may serve different memory func-

tions or, indeed, correspond to different memories.

Compared to hippocampal reactivation, less is known about

corticalmemory reactivation.Our previous analyses of neuronal

ensemblesof the ratmPFCshowedthatmemory-tracesequences

were reactivated about five to seven times faster than the

sequence speedobservedduringbehaviourand that reactivation

was concentrated inUP states [17]. Despite efforts in characteriz-

ingUP states [18,19], it is not clearwhether theyare composed of

multiple subtypes, similar to the findings for the hippocampus

[16]. If they exist, it is important to understand how the UP

subtypes are related to cortical memory reactivation.

To answer these questions, we analysed previously

recorded multi-neuronal spiking activity in the mPFC from

three rats that were trained to run a sequential task on a circular

arena [17]. Briefly, the rats ran to a specific series of locations

around the perimeter of a 1.3 m circular platformwith electrical

brain stimulation targeting the medial forebrain bundle (MFB)

as a reward. Sequences, consisting of six or eight locations,

were repeated throughout the course of a 50–60 min running

session, alternating in blocks of three cued and three non-

cued sequences throughout the task session. Rats ran the

sequence task continuously during two task blocks (task 1

and task 2) each day. Neural activity was recorded for the

entire recording session starting from a first rest period (rest 1)

preceding the first task block and in two post-task sleep periods

following each task block (rest 2 and rest 3). Each rest session

was approximately 30–60 min in duration. In short, a daily

recording session consisted of ‘rest 1’ – ‘task 1’ – ‘rest 2’ –

‘task 2’ – ‘rest 3’ configuration. Rats were implanted with

microdrives containing 12 independently manipulatable four-

conductor electrodes (tetrodes) [20], allowing simultaneous

recording of 55–122 neurons within the mPFC. In this study,

we analysed 10 datasets (four datasets from rat 1, three datasets

from rat 2 and three datasets from rat 3) that exhibit strong reac-

tivation of ‘task 2’ neural activity during themotionless periods

in ‘rest 3’ (table 1).

Using the hidden Markov model (HMM) [21], we asked

whether the UP state could be separated into subtypes. We

also asked whether the subtypes of UP state were correlated

withmemory reactivation dynamics. To understand the current

results, it is important to bear in mind that, in the datasets in

question, the animals had run hundreds of laps on a stereo-

typed spatial sequence, and that the degree of replay and the

high degree of temporal compression are likely to be at least

partly related to this repeated stereotyped behaviour.

2. Results
Our previous study showed that neuronal ensemble activity

during waking could be modelled by the HMM as a sequence

Table 1. Neuron count in each dataset and the firing rates, durations and the exponential time constants τ for UP-1 and UP-2. Number of neurons recorded in

mPFC in each dataset is shown in the column ‘neurons’. Firing rate and duration are shown in their respective columns for UP-1 and UP-2 separately (mean ±

s.e.m.). The exponential time constant, τ (ms), from the state vector decorrelation exponential fit for UP-1 and UP-2, is shown under the columns ‘UP-1 decay

constant (ms)’ and ‘UP-2 decay constant (ms)’.

dataset neurons

UP-1 firing

rate (Hz)

UP-2 firing

rate (Hz)

UP-1

duration (s)

UP-2

duration (s)

UP-1 decay

constant (ms)

UP-2 decay

constant (ms)

1 (rat 1) 72 2.21 ± 0.023 2.85 ± 0.047 0.63 ± 0.020 0.40 ± 0.014 218 50

2 (rat 1) 119 1.99 ± 0.021 2.41 ± 0.033 0.78 ± 0.029 0.41 ± 0.018 107 40

3 (rat 1) 122 1.91 ± 0.017 2.43 ± 0.027 0.68 ± 0.024 0.43 ± 0.017 141 108

4 (rat 1) 120 1.29 ± 0.011 1.54 ± 0.021 0.99 ± 0.040 0.55 ± 0.022 113 91

5 (rat 2) 74 2.16 ± 0.023 2.59 ± 0.024 0.82 ± 0.024 0.55 ± 0.020 141 105

6 (rat 2) 78 2.64 ± 0.015 2.64 ± 0.026 0.70 ± 0.017 0.56 ± 0.016 148 97

7 (rat 2) 69 2.23 ± 0.013 2.55 ± 0.023 0.93 ± 0.025 0.53 ± 0.018 114 100

8 (rat 3) 55 3.28 ± 0.020 3.66 ± 0.029 0.56 ± 0.011 0.47 ± 0.011 126 73

9 (rat 3) 62 2.97 ± 0.019 3.11 ± 0.025 0.56 ± 0.011 0.51 ± 0.013 222 101

10 (rat 3) 57 3.00 ± 0.023 3.41 ± 0.027 0.59 ± 0.014 0.55 ± 0.015 204 114
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of firing rate states with fast and coherent transitions [22].

Here, we extended the HMM approach to spontaneous

neuronal activity during sleep.

(a) Three-state Hidden Markov model detected DOWN

states and two subtypes of UP states
First, we calculated the time series of population firing rate of all

recorded neurons, called multi-unit activity (MUA) (figure 1a).

The bin size was set to 20 ms so that it was small enough to

detect a single DOWN state and was also robust to fluctuation

of population activity in the millisecond time scale owing to the

relatively small number of recorded neurons. Next, to estimate

the smoothed density of DOWNstates, we convolvedGaussian

kernelswith the timepointswhere theMUAvalue reaches zero.

To obtain a robust result, we used three different kernels with

standard deviations of 1.5, 2.0 and 3.0 s and averaged the den-

sities (figure 1b; electronic supplementary material, figure S1).

Detection of UP–DOWN oscillation periods was based on the

distribution of the DOWN state density where the threshold

was chosen at the position of a valley in this distribution

(figure 1b, left). Periods that exceed the threshold during

motionless periods (figure 1a, grey background) were con-

sidered periods of UP–DOWN oscillations (figure 1b, blue

horizontal bars). In this study, the detected periods of UP–

DOWN oscillations are called UP–DOWN epochs, and a total

of 154 epochs were identified in 10 datasets.

For each detectedUP–DOWNepoch,we applied theHMM

with three states.We aimed at detecting not only the transitions

between UP and DOWN states but also possible subtypes of
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Figure 1. Detection of DOWN, UP-1 and UP-2 states using HMM. (a) An example of population firing rate during post-task rest using a 20 ms bin size. Grey patches

depict motionless periods. (b) A binary vector was created from bins where the population firing rate equaled zero and convolved with three Gaussian kernels with

standard deviations of 1.5, 2 and 3 s, normalized and then averaged together to get the density of down states. The average distribution of values from these 3

Gaussian kernels is shown on the left. A threshold was chosen based on the position of a valley in this distribution. The threshold was used to find epochs of

potential UP–DOWN oscillations (blue bars). (c) Results of the HMM. Sequence of states shown in blue and a raster plot depicting the neuron firings for one epoch.

(d ) Proportion of the occurrences of each subtype (mean ± s.e.m.). (e) Total time spent within each subtype (mean ± s.e.m.) ( f ) UP-1 and UP-2 composition within

UP states. The percentages of UP states containing UP-1 only, UP-2 only, a transition from UP-1 to UP-2, a transition from UP-2 to UP-1 and UP states containing

multiple transitions were quantified and averaged over datasets (mean ± s.e.m.). (***p< 0.001).
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UP state. Briefly, at every 1-ms bin, the ID of neurons that fired

in that bin was detected. If multiple neurons fired, the neuron

ID was selected randomly. If no neuron fired, that bin was set

as 0. For the 10 datasets analysed in this study, the average per-

centage of bins with coincident firing was 1.68%. This is

approximately 2.5 times higher than the percentage of coinci-

dent firing in our previous study (0.65%) [22]. The difference

may depend on several factors such as that the number of sim-

ultaneously recorded neurons in the local brain area was

different (the median of 5 in [22] and 73 in this study) and

that animals used were different (monkey in [22] and rat in

this study). Regardless of the difference, 1.68% is small and is

unlikely to affect the overall results. The unidimensional

sequence of these neuron IDs was given to the HMM. For

each dataset, the HMM was trained using all detected UP–

DOWNepochs in rest 3. Once it was trained, themost probable

sequence of hidden states for each epoch was generated using

the trained HMM. The HMM identified three states, one with

low-firing activity and twowith high-firing activity (figure 1c).

We call the low activity state a DOWN state and both the high

activity states UP states. The two subtypes in UP state is called

UP-1 and UP-2 states. Definition of UP-1 and UP-2 is given in

the next section. To assess how well DOWN and UP states are

separated, we compared the firing rate distributions of DOWN

and UP states in each epoch and ran the two-sample Wilcoxon

rank-sum test. We found that the firing rate distributions were

significantly different (p<0.05) in 152 out of 154 epochs. The

remaining two epochs were too short to run the test. These

results showed that the HMM with three states identified

DOWN and UP states successfully. We also found that UP-1

occurred significantly more frequently than UP-2 (71.0 ±

1.37% versus 29.0 ± 1.37% (mean± s.e.m.) Lilliefors test for nor-

mality: p ¼ 0:5 for both UP-1 and UP-2, paired t-test:

p ¼ 1:2� 10�7, figure 1d ) and that the total duration of UP-1

was significantly longer than UP-2 (720.3± 88.9 s (78.1%±

1.24%) versus 201.5 ± 28.2 s (21.9%±1.24%) (mean± s.e.m.),

Lilliefors test for normality: p . 0:4 for both UP-1 and UP-2,

paired t-test: p ¼ 4:1� 10�5, figure 1e).

Figure 1c indicates that a single UP state comprises UP-1 or

UP-2 entirely or exhibits a transition between UP-1 and UP-2.

To investigate the relative frequency of these compositions,

we classified UP states into five composition types: ‘UP-1

only’, ‘UP-2 only’, ‘UP-1 toUP-2 transition’, ‘UP-2 toUP-1 tran-

sition’ and ‘multiple transitions’. The percentage plot of five

types elucidated that a single UP state was dominated by

‘UP-1 only’ (64.8%), followed by ‘UP-2 only’ (15.5%), ‘UP-1

to UP-2’ (13.9%), ‘multiple transitions’ (3.3%) and ‘UP-2 to

UP-1’ (2.5%) (figure 1f ). Interestingly, asymmetry existed for

‘UP-1 only’ and ‘UP-2 only’ UP states; ‘UP-1 only’ was 4.2

times more frequent than ‘UP-2 only’. Similarly, transition

between UP-1 and UP-2 was also asymmetric; ‘UP-1 to UP-2

transition’ was 5.6 times more frequent than ‘UP-2 to UP-1

transition’. Note that 3.3% of ‘multiple transitions’ indicates

that a single UP state was rarely composed of more than 2 sub-

types. Statistical tests confirmed that other than a ‘UP-2 only’

and ‘UP-1 to UP-2 transition’ pair and an ‘UP-2 to UP-1 tran-

sition’ and ‘multiple transitions’ pair, everything was

statistically significant (Lilliefors test for normality: p . 0:2

for all five types, one-way ANOVA: p ¼ 6:0� 10�34, follow-

up multi-comparison test with Tukey-Kramer criterion:

except for ‘UP-2 only’ versus ‘UP-1 to UP-2 transition’:

p ¼ 0:92 and ‘UP-2 to UP-1 transition’ versus ‘multiple tran-

sitions’: p ¼ 0:99, all pairs: p , 10�5). In summary, the three-

state HMM parsed neural activity into three states, one with

low-firing rates (DOWN state) and two with high-firing rates

(UP-1 and UP-2 subtypes). The relative compositions of a

single UP state vary widely; ‘UP-1 only’ and ‘UP-1 to UP-2

transition’ was four to six times more frequent than ‘UP-2

only’ and ‘UP-2 to UP-1 transition’, respectively. The results

suggest that UP states are dominated by UP-1 and that UP-2

tends to follow UP-1 if they occur in the same UP state.

(b) Two subtypes of UP state are characterized by

different rates of population vector decorrelation
To characterize the three detected states (DOWN, UP-1 and

UP-2), we first calculated the mean firing rate of three states.

The histogram of firing rate, defined as total spikes from all

cells divided by state duration, showed that DOWN state

was strongly skewed toward lower firing rates and that the

two UP subtypes have similar firing rates (figure 2a, top left;

three representative examples from 1 day of recording of rat

1, rat 2 and rat 3; blue, orange and yellow bars represent

DOWN state, UP-1 and UP-2, respectively). Individual

values of the mean firing rate for all 10 datasets are available

in table 1. Comparison of the medians of firing rates over

10 datasets confirmed that the firing rate distributionswere sig-

nificantly different between the DOWN state and two UP

subtypes but there was no significant difference between the

subtypes (one way ANOVA test: p ¼ 6:23� 10�11, follow-up

multi-comparison test with Tukey-Kramer criterion: DOWN

versus UP-1: p ¼ 6:34� 10�9, DOWN versus UP-2:

p ¼ 1:12� 10�9, UP-1 versus UP-2: p ¼ 0:259, figure 2a, top

right). Next, we calculated the duration of the DOWN state

and the two UP subtypes. The histogram showed that the

DOWN state had a much shorter duration than the two UP

subtypes (figure 2a, bottom left, three representative examples

as figure 2a, top left). Individual values of the mean duration

for all 10 datasets are available in table 1. Comparison of the

medians of duration over 10 datasets revealed that the

DOWN state was significantly shorter than two UP subtypes

and that UP-1 was significantly longer than UP-2 (one way

ANOVA test: p ¼ 1:07� 10�12, follow-up multi-comparison

test with Tukey-Kramer criterion: DOWN versus UP-1:

p ¼ 9:52� 10�10, DOWN versus UP-2: p ¼ 7:33� 10�8, UP-1

versus UP-2: p ¼ 1:57� 10�5, figure 2a, bottom right). This

result is consistent with the representative example in figure 1c

where UP-1 tended to be longer than UP-2.

Although descriptive statistics such as the mean firing rate

and duration summarized important features of the DOWN

and two UP subtypes, they did not characterize the properties

in temporal dynamics. To this end, we investigated how

quickly the population vectors (PVs) decorrelate within each

subtype. For each UP-1 and UP-2 event, we calculated the cor-

relation coefficient (CC) between the PVs as a function of the

temporal separation between the vectors. The PV was defined

as a vector containing the number of spikes for each neuron

within a bin. The bin size of the firing rate vectors was 1 ms.

PV decorrelation was computed as follows. For a specific UP

subtype event, CCs between the first PV(1) and the succeeding

PVs, PV(2), PV(3), PV(4),… , PV(T), were calculated and the

result was stored as CC(1, 2), CC(1, 3), CC(1, 4),… , CC(1, T ),

where T is the number of bins in the UP subtype event. Next,

CCs between the second PV(2) and the succeeding PVs,

PV(3), PV(4), PV(5),… , PV(T ), were calculated and the result

was stored as CC(2, 3), CC(2, 4), CC(2, 5),… , CC(2, T ).
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Repeating this procedure filled an upper triangle of [T×T ]

matrix of CCs for the specific UP subtype event. We repeated

this procedure for all UP subtype events. Averaging the CC

matrices for UP-1 and UP-2 events separately resulted in one

averaged CCmatrix for UP-1 and one for UP-2. By taking diag-

onal averages on the upper triangle portion (e.g. for one-bin

separation, the average was taken over C(1, 2), C(2, 3), C(3,

4),…, C(T – 1,T )), we obtained a series of CC values describing

how PVs decorrelated as a function of the temporal separation

between them. Finally, we fitted the curve by an exponential

functionwith a bias y ¼ a� exp (�ðx=tÞ)þ b. In the representa-

tive examples (figure 2b, the same three rats as figure 2a), the

UP-1 decorrelated more slowly than the UP-2 for all three

animals; the exponential time constants were tUP-1
rat 1 ¼ 218ms,

tUP-2
rat 1 ¼ 50ms, tUP-1

rat 2 ¼ 148ms, tUP-2
rat 2 ¼ 97ms, tUP-1

rat 3 ¼ 126ms

and tUP-2
rat 3 ¼ 73ms. To investigate whether the exponential

time constants are significantly different between UP-1 and

UP-2, we averaged the exponential time constants over 10 data-

sets (figure 2c; UP-1: 153.3± 14.8 ms, UP-2: 87.7 ± 8.1 ms (mean

± s.e.m.)). Individual values of the exponential time constant

for all 10 datasets are available in table 1. Statistical test con-

firmed that the exponential time constant was significantly

different between UP-1 and UP-2 (Lilliefors test for normality:

p ¼ 0:07 for both distributions, paired t-test: p ¼ 0:002). Based

on these results, we call the long-duration and slow-decaying

subtype the ‘UP-1’ state and the short-duration and fast-decay-

ing subtype the ‘UP-2’ state. In summary, the two subtypes of

UP state were characterized by the differences in duration as

well as in the PV decorrelation rate. These rates can be inter-

preted as a reflection of the speed of neural sequence readout

[17,23].

(c) Memory reactivation occurred predominantly in the

UP-2 state
To investigate possible functional differences between UP-1

and UP-2, we asked whether they were correlated with

memory reactivation dynamics. Using template matching

(TM) [17,23,24], we assessed the strength of memory reactiva-

tion and the best temporal compression rate during rest

3. Briefly, a template is the multi-neuronal spiking activity

that was observed when an animal was engaged in a specific

behaviour. In the sequential task, therewere six or eight behav-

iour segments that correspond to the animal’s departure from

one reward point and arrival at the next one. Thus, we gener-

ated six or eight templates and they were represented by an

N×M matrix, where N represents the number of recorded

neurons and M represents the number of time bins. Following

the previous study [17], bin size was set 100 ms. In order to

measure memory reactivation signals, a target matrix with

the same size as the templatewas selected from rest 3. Similarity

between two matrices, template and target, was calculated

using the Pearson correlation coefficient measure proposed

by Louie & Wilson [24]. The TM comparison was performed

from the beginning to the end of rest 3. After TMby the original

template was completed, the template was shuffled by
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Figure 2. Firing rate, duration and state vector decorrelation of UP subtypes. (a) Distributions of different attributes for the three states detected using HMM. Firing

rate (top) and duration (bottom) show the distribution for all occurrences of each state for three representative datasets. Mean firing rate and duration for each

subtype were calculated and the bar plots over datasets are shown (mean ± s.e.m.) (right) (***p< 0.001). (b) State vector decorrelation for UP-1 (top) and UP-2

(bottom). An exponential function (orange) was fit to each of these decorrelations. (c) The decay constant τ from the exponential fit in (b) for UP-1 and UP-2 across

datasets (mean ± s.e.m.) (**p< 0.01).
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randomly permuting columns (column shuffle) and the TM

procedure was performed again. This shuffling was repeated

500 times. The mean and standard deviation of the correlation

values found for each time bin from these shuffled TM results

were used to z-score the original TM correlation. In this study,

we used the column shuffle because it typically produced the

most conservative z-score compared to other shuffling (e.g.

bin shuffle, swap shuffle and shift shuffle [24]). In order to

investigate whether the reactivation happens faster than the

speed of the patterns during behaviour, we modified the bin

size of the target matrix between 10 and 100 ms; 10 ms corre-

sponds to 10× compression and 100 ms corresponds to no

compression (1× compression). The best compression rate

was assessed by counting the number of significant z-score

peaks of the TM results (e.g. the peaks> z-score = 5). The com-

pression rate with the maximum number of the peaks was

chosen as the best compression rate. This procedure was

repeated for each template, and the template with the maxi-

mum number of the z-score peaks was selected as the best

overall template and the corresponding compression rate was

selected as the best overall compression rate. Note that the tem-

plates that we investigated in this study were highly similar to

each other because of the similarity of sequences between

different reward sites. Therefore, all templates reactivated in

a similar manner.

An example TM result is depicted in figure 3a. The tem-

plate consisting of 22 neurons and 25 bins (figure 3a(i)) was

moved over a segment of rest 3 (figure 3a(ii)). This procedure

resulted in TM correlations that were z-scored by the shuf-

fling procedure (figure 3a(iii)). The timing of memory

reactivation occurrence was estimated at the centre of the

TM result. This example shows that the best TM correlation,

with z-score = 7.41, was detected at around 380 ms in which

time was aligned with neural activity during rest 3

(figure 3a(ii)). As the red background represents UP-2, it indi-

cates that reactivation occurred within UP-2. As was shown

in previous studies, reactivation was never perfect; some

neurons do not fire and the order of neurons’ firing can be

reversed. Even though the z-scored TM correlation reached

7.41, the raw correlation value was 0.396.

To investigate the relationship betweenUPsubtypes and the

timing ofmemory reactivation, we combined the results of sub-

type detection byHMMand that of TM.We found thatmemory

reactivationoccurredpredominantly in theUP-2 (figure 3b, 9.0 ±

3.3% in UP-1 and 91.0± 3.3% in UP-2 (mean± s.e.m.), the

threshold z-score= 5, Lilliefors test for normality: p ¼ 0:08 for

both UP-1 and UP-2, paired t-test: p ¼ 6:4� 10�7). If reactiva-

tion is distributed over UP-1 and UP-2 equally, the ratio is

expected to be proportional to the subtype event ratio (71.0%

inUP-1 and 29.0% inUP-2, figure 1d) or similarly to the subtype

event duration (78.1% inUP-1 and 21.9% inUP-2). Both suggest

thatmore reactivationshouldoccur inUP-1.However, theoppo-

site result was obtained, indicating that memory reactivation of

recent experience preferred UP-2.

For the 10 datasets that we analysed in this study, the com-

pression rates of the TM memory reactivation were 5–10 times

with amean of 7.4 times. Thismeans that sequence reactivation

during rest 3 occurred on average 7.4 times faster than the

speed that was observed during the task period. We asked

whether these compression rates were comparable to the

ratios of the exponential time constants of PV decorrelation

between the task and UP subtypes. The ratio between task

and UP-2, ttask=trestUP-2, was distributed between 4.1 and 12.7

with amean of 7.5. This suggests that the PVs duringUP-2 dec-

orrelate on average 7.5 times faster than those during task. The

ratio between task and UP-1, ttask=trestUP-1, was distributed

between 1.8 and 7.2 with a mean of 4.5, suggesting that the

PVs during UP-1 decorrelate on average 4.5 times faster than

those during task. Statistical test over the three variables,

TM compression rate, ttask=trestUP-2 and ttask=trestUP-1, confirmed

that ttask=trestUP-2 and TM compression rate were not significantly

different, while ttask=trestUP-1 and TM compression rate as

well as ttask=trestUP-1 and ttask=trestUP-2 were significantly different

(Lilliefors test for normality: p ¼ 0:5 for all distributions, one-

way ANOVA: p ¼ 0:0035, follow-up multi-comparison test

with Tukey-Kramer criterion: TM compression rate versus

ttask=trestUP-1: p ¼ 0:0094, TM compression rate versus

ttask=trestUP-2: p ¼ 0:996, ttask=trestUP-1 versus ttask=trestUP-2:

p ¼ 0:0076). These results confirmed that the compression

rates by TM were comparable to the ratio of exponential time

constants between the task and UP-2, but not with that

between the task and UP-1. Taken together, these results

show that memory sequence reactivation occurs predomi-

nantly in UP-2. We also confirmed that the decorrelation

speed of the PVs during UP-2 was comparable to the TM

compression rate.

(d) Sequence of UP subtypes is influenced by the

duration of UP state and occurrence of memory

reactivation
To investigate how the UP-1 and UP-2 are sequenced within a

single UP state, especially in UP states that contained signifi-

cant reactivation signals (reactivating UP states), we sorted

the reactivating UP states by duration (figure 4a, the same

three rats as figure 2a,b). We found that entire UP states

were dominated by UP-2 when the duration of UP states

was relatively short. When the duration got longer, UP

states tended to start with UP-1 and transit to UP-2.

We quantified this tendency by dividing the reactivating

UP states into two groups. With a duration threshold of 580–

1250 ms, the two groups had almost the same number of

samples. We then investigated in which UP subtypes (UP-1

or UP-2) the reactivating UP states started and ended. We

found that reactivating UP states with short durations tended

to start and end with the UP-2, supporting the observation

that UP states were dominated by UP-2 (figure 4b, left: UP-1:

0.3321± 0.0369, UP-2: 0.6679± 0.0369 (mean± s.e.m.): Lilliefors

test for normality: p ¼ 0:5 for both distributions, two-sample t-

test: p ¼ 0:0025; figure 4b, right: UP-1: 0.0520± 0.0186, UP-2:

0.948± 0.0186 (mean± s.e.m.): Lilliefors test for normality:

p ¼ 0:227 for both distributions, two-sample t-test:

p ¼ 1:7� 10�9). By contrast, reactivating UP states with long

durations tended to start with UP-1 and end with UP-2.

(figure 4c, left: UP-1: 0.682± 0.0366, UP-2: 0.318± 0.0366

(mean± s.e.m.): Lilliefors test for normality: p ¼ 0:5 for both

distributions, two-sample t-test: p ¼ 0:012; figure 4c, right:

UP-1: 0.143± 0.0381, UP-2: 0.857± 0.0381 (mean± s.e.m.): Lil-

liefors test for normality: p ¼ 0:335 for both distributions,

two-sample t-test: p ¼ 1:1� 10�6).

To investigate whether the sequential structure of UP-1

and UP-2 described above is specific to reactivating UP

states, we also analysed non-reactivating UP states by cate-

gorizing them into short- and long-duration ones, using the

same duration threshold as above. We found that both
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short and long UP states started and ended with the UP-1

predominantly (figure 4d, left: UP-1: 0.798 ± 0.0134, UP-2:

0.202 ± 0.0134 (mean± s.e.m.): Lilliefors test for normality:

p ¼ 0:5 for both distributions, two-sample t-test:

p ¼ 4:9� 10�9; figure 4d, right: UP-1: 0.730 ± 0.0143, UP-2:

0.271 ± 0.0143 (mean± s.e.m.): Lilliefors test for normality:

p ¼ 0:475 for both distributions, two-sample t-test:

p ¼ 1:2� 10�7; figure 4e, left: UP-1: 0.904 ± 0.0096, UP-2:

0.096 ± 0.0096 (mean± s.e.m.): Lilliefors test for normality:

p ¼ 0:5 for both distributions, two-sample t-test:

p ¼ 9:3� 10�12; figure 4e, right: UP-1: 0.741 ± 0.0244, UP-2:

0.259 ± 0.0244 (mean± s.e.m.): Lilliefors test for normality:

p ¼ 0:121 for both distributions, two-sample t-test:

p ¼ 4:4� 10�6). These results suggest that a sequence of UP

subtypes within a single UP state is influenced by occurrence

of reactivation of recent experience. In summary, we showed

that the short reactivating UP states were dominated by UP-2

and the long reactivating UP states exhibited transition from

UP-1 to UP-2. We also showed that the sequential structure of

subtypes within non-reactivating UP states was different

from that of reactivating ones, indicating that the sequence

of UP subtypes depended on the existence of memory

reactivation of recent experience.

(e) Two UP subtypes are separated along the first

principal component
Finally, we asked whether UP-1 and UP-2 could be separated

distinctively. To answer this question, we first converted

an individual UP subtype event in rest 3 to a mean firing
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Figure 3. Template matching. (a) Example of the template matching algorithm. (i) The template obtained by averaging neural activity of one segment of the

sequence during task 2 of one recording session from an animal. (ii) A snapshot of neural activity during rest 3. The template was binned using a 100 ms bin. The

neural activity during rest 3 was binned using a 14.3 ms (approx. 100/7 ms) bin, representing a match using a 7× compression rate in this example. Compression

rates between 1× and 10× were explored and the one that had the most z-scored correlation peak values above 5 was selected as the best compression rate. The

corresponding z-scored correlation values are shown in (iii). Dashed line depicts a threshold of 7 and the peak is used to mark the moment of best match, which is

taken as the time when replay occurred. The red patch depicts UP-2. (b) Ratio of number of replay events found in UP-1 and UP-2. Replay events exceeding z-score

value of 5 were used. (***p< 0.001).
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rate vector. That is, an UP subtype that was represented by a

[N×T ] matrix, where N is the number of neurons and T is the

number of time bins, was converted to a [N× 1] mean firing

rate vector. The mean firing rate vectors from both UP-1

and UP-2 were concatenated together to make one large

matrix. Then, neuron-wise (row-wise) standardization was

performed using the mean and the standard deviation of

each neuron’s firing activity. Principal component analysis

(PCA) was performed on this set of vectors, and the result

was projected onto two-dimensional space spanned by the

first two principal components (figure 5a, the same three

rats as figures 2a,b and 4a). Each dot represents a UP subtype

event where UP-1 is plotted in blue and UP-2 in red. Larger

dots denote the UP subtype events containing significant TM

reactivations (z-score = 5 and above). Percentages of UP-1 and

UP-2 events that had significant reactivation for each dataset

50

0

10

20

30

40

0 0

20

15

10

510

20

30

40

2.5 5 2.01.51.00.543212.01.5

1.0

**

***

***
*

***

***

***

***

#
 s

u
b

ty
p

e/
#

 U
P

#
 s

u
b

ty
p

e/
#

 U
P

#
 s

u
b

ty
p

e/
#

 U
P

#
 s

u
b

ty
p

e/
#

 U
P

#
 s

u
b

ty
p

e/
#

 U
P

#
 s

u
b

ty
p

e/
#

 U
P

#
 s

u
b

ty
p

e/
#

 U
P

#
 s

u
b

ty
p

e/
#

 U
P

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

duration (s) duration (s) duration (s)

rat 1
re

ac
ti

v
at

in
g

 U
P

 s
ta

te
 n

u
m

b
er

UP-1
UP-2

UP-1 UP-2

reactivating  UP (short)-start reactivating  UP (short)-end

reactivating  UP (long)-start reactivating  UP (long)-end

non-react. UP (short)-start non-react. UP (short)-end

non-react. UP (long)-start non-react. UP (long)-end

UP-1 UP-2

UP-1 UP-2

UP-1 UP-2

UP-1 UP-2

UP-1 UP-2

UP-1 UP-2

UP-1 UP-2

rat 2 rat 3

0.5

(a)

(b)

(c)

(d)

(e)
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are summarized in figure 5b. We found that the two subtypes

were clearly separated along the first principal component

but not in other principal components (electronic supplemen-

tary material, figure S2). We also confirmed that 7 other

datasets exhibited a similar tendency. To assess how well

UP-1 and UP-2 clusters were separated, we calculated the

cluster strength measure D [25]. In short, D is a measure of

the quality of clustering result where a higher D value indi-

cates better cluster separation with small within-cluster

distances and large inter-cluster distances. Generally, cluster-

ing is considered valid when clusters have D>2. We found

that D>2 for all 10 datasets (figure 5c), suggesting that two

UP subtype clusters were clearly separated. In conclusion,

we found that UP-1 and UP-2 were distinct states and that

they were separated along the direction of the first principal

component.

3. Discussion
Inspired by the recent finding that SWRs can sometimes be

differentiated into multiple subtypes [16], we investigated

whether the cortical UP state could be decomposed into sub-

types. Using the HMM with three states, we showed that the

UP–DOWN oscillations were separated into a DOWN state

and two UP state subtypes. The two subtypes were character-

ized by different durations and different speed of PV

decorrelation, where the long-duration and slow-decorrelating

subtype is called UP-1 and the short-duration and fast-decorr-

elating subtype is called UP-2. We showed that a sequential

reactivation of recent experience predominantly occurred in

the UP-2 state. Furthermore, we found that a short-duration

reactivating UP state was predominantly composed of UP-2

and a long-duration reactivating UP state exhibited a transition
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from UP-1 to UP-2. Finally, we showed that UP-1 and UP-2

were distinct states that were separated along the direction of

the first principal component.

The finding that long reactivating UP states exhibited a

transition from UP-1 to the UP-2 has several implications. We

speculate that the long reactivating UP state may reactivate

other experiences during UP-1, possibly remote experiences,

and transit to reactivation of recent experience during UP-2.

This mechanism may support gradual integration of recent

experience with pre-existing cortical memories. It may have

attractor dynamics that is similar to the transition from global

to fine information in the macaque temporal cortex [26,27].

Although there is no evidence that remote memory is reacti-

vated during UP-1 because neural activity templates for the

remote experiences are not easily available, this UP-1 to UP-2

transition is in linewith the hypothesis of inter-leaved reactiva-

tion of newer and older memories as a mechanism of

preventing catastrophic interference [28].

According to a standard consolidation model [29], the

hippocampus is thought to integrate information from

the distributed cortical modules and rapidly fuse the infor-

mation into a coherent memory trace. Reactivation of the

hippocampal–cortical network during sleep leads to strength-

ening and/or rearrangement of cortico-cortical connections,

which eventually allows new memories to become indepen-

dent of the hippocampus. Although evidence suggests that

the hippocampal–cortical interaction occurs around SWRs

and UP states, the detailed interactions in the SWR subtype

and UP subtype level are not clear. We speculate that

SWRs interact with UP-2 more strongly than UP-1 because

UP-2 contains reactivation of recent experience. However, it

warrants future investigation.

In this study, we have detected two subtypes of UP states

by the three-state HMM. It is possible that cortical UP states

are further decomposed into more than 2 subtypes, just as

SWRs were differentiated into four subtypes [16]. This ques-

tion can be investigated using the HMM with 4 or more

hidden states. However, it is out of the scope of this short

paper and warrants future investigation.

4. Methods

(a) Recording procedures
Threemale BrownNorway/Fisher 344Hybrid rats 7–9months old

at the time of surgery, 350–400 g) were used for the recording,

which consisted of two 50–60 min sequential task sessions and

three 30–60 min rest sessions. The recording started with the first

rest session (rest 1), followed by the first task session (task 1), the

second rest session (rest 2), the second task session (task 2) and

the third rest session (rest 3). Two rats were implanted with a

hyperdrive (more details below) containing 12 independently

movable tetrodes [21,30] in the mPFC and twisted-pair local field

potential electrodes in the hippocampus. The third rat was

implanted with a dual-bundle Hyperdrive in the mPFC and CA1

of the hippocampus. The numbers of recorded neurons in each

dataset are summarized in table 1. Detailed surgical and recording

procedures are explained in the experimental protocol of [17].

Here, we provide brief description.

(i) Apparatus
All behaviour took place on a 1.3 m diameter circular arena. Light-

emitting diodes (LEDs) were positioned at eight equally spaced

locations around the perimeter. The LEDs were located 2 cm

above the table surface and flashed at 2 Hz when lit. The exper-

iment was controlled by a microcontroller card and a standard

PC computer. The computer also performed data acquisition.

Custom software monitored the rat’s position and turned on

lights, tones and electrical brain stimulation as required.

(ii) Data acquisition
Neural recordings were obtained via a chronically implanted

‘hyperdrive’ consisting of 12 independently movable tetrodes.

Each tetrode consisted of four polyimide-coated nichrome wires

(diameter 14 µm) twisted together [20]. Hyperdrive construction

was as described in Gothard et al. [30]. During recording sessions,

the hyperdrive was connected to a unity-gain headstage that

enabled low-noise transmission of neural data to the recording

system. The headstage also contained an array of LEDs that

could be detected by an overhead camera, enabling tracking of

the position of the rat on the maze at 60 frames per second (FPS).

All data were recorded using a Neuralynx Cheetah recording

system. Single unit data from each tetrode were amplified, filtered

between 0.6 and 6 kHz and digitized at 32 kHz. Video spatial res-

olution was approximately 3 pixels cm−1.

(iii) Surgery and electrode placement
NIH guidelines and IACUC approved protocols were followed for

all surgical and behavioural procedures. Each ratwas anaesthetized

with Isoflurane, placed in a stereotaxic holder and injected with

Penicillin G. The skull was cleared of skin and fascia and cranio-

tomies were opened for two stimulating electrodes targeting the

MFB and a hyperdrive. The hyperdrive was centred over the left

mPFC at 2.9–3.0 mm AP, 1.3 mm ML and angled at 9.5° towards

the midline. Rats were returned to ad libitum feeding and allowed

to recover for 3–4 days after surgery. Single units frommPFC were

recorded with respect to a reference electrode positioned deep in

the mPFC (5000 µm from brain surface). After all recordings were

complete, the tips of the recording electrodes were marked by elec-

trolytic lesions (5 µamp for 10 s, positive to electrode, negative to

ground) to confirm the recording location.

(iv) Reward
MFB stimulation was used as reinforcing reward. All stimula-

tion used two wires. The choice of electrodes was determined

empirically based on the rat’s response. A range of stimulation par-

ameters was explored using an operant conditioning chamber

equipped to deliver MFB stimulation when the rat performed a

nose poke. The final selected MFB stimulation consisted of a train

of 400 µs wide, 70–100 µA, biphasic current pulses, delivered at

150 Hz for 320–370 ms.

(v) Behavioural procedures
For pre-training purposes, all rats were food-deprived to 85% of

their ad libitum weight. The rats were pre-trained to find reward

at one of the eight, equally spaced zones on the edge of the circular

arena. A training session lasted 50–60 min and comprised a ran-

domly selected series of segments. The process of running each

segment will subsequently be referred to as a ‘trial’. Each trial

began with two, simultaneously presented cues: a non-directional

4 kHz tone that signalled the availability of reward somewhere in

the arena, and the illumination of one blinking LED that marked

the correct reward zone. Rats were trained to run to the vicinity

of the correct reward zone (within 10 cm) whereupon the reward

was delivered and the trial completed. The next trial began after

a fixed delay from the onset of reward delivery (500 ms for stimu-

lation-trained and 1000 ms for the food trained rat). This training

continued until each rat made direct trajectories to reward

locations. Sequence training occurred following surgery. Sequence

tasks were presented to each rat by cueing reward zones in a
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predetermined order. The trial structure and delay periodwere the

same as during pre-training except that MFB stimulation was sub-

stituted for food reward. After a rat completed a sequence three

times with guidance from LED cues (a ‘cued’ block of sequences),

a 5 s delaywas inserted between the non-spatial, audio cue and the

illumination of the cue light, providing time for the rat to move to

the next reward location without the aid of the visual cue. Given

the typical running speed of a rat, the vast majority of cue-delay

trials in well learned sequences were completed without the LED

and are hence referred to as ‘non-cued’ trials. After the rat com-

pleted the non-cued sequence three times, audio and visual cues

were presented simultaneously, again, starting another cued

block. Blocks of three, complete traversals of the sequence alter-

nated between cued and non-cued throughout the duration of

the recording session. Sequences that contained six or eight seg-

ments were used. For each sequence, rats were trained until they

reached asymptotic performance. Asymptotic performance was

usually reached within 3 days, using two training sessions per

day. Electrodes were then pushed down to acquire new cells and

a new sequence was initiated. The new sequence was created by

flipping and rotating the original sequence so as to create a

sequence novel to the rat. The flip ensured that the order of turns

was reversed while the rotation ensured that a different configur-

ation of places was rewarded. In this paper, we used the data

from task 2 as the task session and rest 3 as the post-task rest ses-

sion because memory reactivation signal was most clearly

detected in this combination [17].

(b) Detection of UP–DOWN oscillation epochs
In order to assess the epochs that potentially contain clear UP and

DOWN states within SWS, the firing rates of MUA using a 20 ms

bin size were calculated. Subsequently, by finding all the bins

where the multi-unit firing rate is equal to zero, indicating

DOWN states, a binary vector was made that marks the position

of these bins. Then, this binary vector was convolved with a

Gaussian kernel. To obtain robust results, the binary vector was

convolved separately with three kernels having different standard

deviations of 1.5, 2 and 3 s (electronic supplementary material,

figure S1). The convolved traces were then averaged together

and resulted in a relatively clear bimodal distribution for each of

the 10 datasets. The valley in this bimodal distribution was used

as a threshold for the averaged convolved trace and periods

above this threshold were used as epochs with potentially high

density of UP and DOWN oscillations. Using video recording, it

was verified whether or not the selected epochs occurred when

the animal was motionless and we only selected the parts occur-

ring while the animal was still

(c) Hidden Markov model
An HMM is a statistical Markov model in which the system being

modelled is assumed to be a Markov process with unobserved

(hidden) states [21]. In an HMM, the state is not directly visible

but the output, dependent on the state, is visible. Each detectable

hidden state by HMM has a probability distribution over the poss-

ible output tokens. In the HMM, each state is defined by a vector

consisting of the average firing rates of the N recorded neurons.

For each state, neurons are assumed to be independent of the

events before and can be fully described by the immediate firing

probability, similar to a stationary Poisson process. The HMM can

be fully described by two matrices, E and A. Eij is an emission

matrix that determines the probability of neuron j firing in state Si.

Aij is a transition matrix that gives the probability of transitioning

from state Si to state Sj. The probability of a transition between

two hidden states only depends on the identities of the states. As

a result,Aij is independent of time. The HMMmodel predicts a dis-

tinct hidden state at time t to represent all of the information

preceding it. These matrices, E and A, are determined as a part of

the training algorithm for HMMs. The HMM used in this study

was a three-state model trained by binning the MUA with 1 ms

bins. Each bin was set to the ID of the neuron that fired in that bin

and ifnoneuron firedavalueof 0wasgiven. Incaseswheremultiple

neurons fired within the same bin, which was on average 1.68% of

the bins of our datasets, a randomly selected neuron ID among

the IDs of firing neurons was used. Neuron IDs were provided in

the recording procedure by Neuralynx cheetah recording system,

and these IDs do not necessarily carry specific information.

In order to understand how HMM works, the key point is to

calculate, P(Oj l), which is the probability of the observation

sequence O, given the model λ, where O ¼ O1:O2 . . . OT and

l ¼ {E, A} [21]. In our case, Oi [ {0, . . . ,N} is the ID of the neuron

that fired within the bin, with 0 being used to indicate that no

spikes occurred. The probability of the observation sequence O

for the state sequence Q is

P(OjQ, l) ¼
Q

T

t¼1
P(Otjqt, l), ð4:1Þ

where qt is the state at time t and T is the number of all observa-

tions. By assuming the observations are statistically independent,

we get the following expression:

P(OjQ, l) ¼ eq1 (O1) : eq2 (O2) . . . eqT (OT) ð4:2Þ

in which we define Eij ¼ feqt ðOtÞ ¼ eiðjÞ as the probability distri-

bution for the firing of neuron j in the state Si. For the state

sequence Q:

P(Qjl) ¼ pq1aq1q2aq2q3 . . . aqT�1qT ð4:3Þ

where A ¼ faijg is the state transition probability distribution. Sub-

sequently, the joint probability of O and Q can be defined as

P(O,Qj l) ¼ P(OjQ, l)P(Q, l): ð4:4Þ

Then, by calculating the sum of this joint probability across

all possible state sequences q, the probability of O, given the

model, can be calculated as follows:

P(Oj l) ¼
P

all Q

P(OjQ, l) P(Qjl) ð4:5Þ

¼
P

q1 ,q2 ,::,qT

pq1 eq1 (O1)aq1q2 eq2 (O2) . . . aqT�1qT eqT (OT): ð4:6Þ

Now the best approach to make the calculations computation-

ally feasible is the forward–backward procedure. The forward

probability, at(i), is defined as

at(i) ¼ P(O1O2 . . .Ot, qt ¼ Sijl) , ð4:7Þ

which is the probability of the partial observation sequence up to

time t, O1O2 . . .Ot, with state Si at time t, given the model l. The

equation can be solved as follows:

(1) Initialization

a1(i) ¼ piei(O1), 1 � i � N: ð4:8Þ

By introducing the joint probability of state Si and initial

observation O1, the forward probabilities are initialized.

(2) Induction

atþ1(j) ¼
X

N

i¼1

at(i)aij

" #

ej(Otþ1), 1 � t � T � 1,

1 � j � N:

ð4:9Þ

By completing the computation for all states j, and sub-

sequently, iterating all t, the probability of the complete history

of the observation from which the likelihood P(Oj l) can be
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obtained is defined by the forward probability as follows:

P(Oj l) ¼
P

N

i¼1

aT(i): ð4:10Þ

As a result, to find P(Oj l) we just need to find the sum of

aT(i)s.

In the same manner, the backward probability bt can be

defined as

bt(i) ¼ PðOtþ1 Otþ2 . . . OT jqt ¼ Si,lÞ, ð4:11Þ

which is the probability of partial observation sequence from time

t+1 to the end, given that the state at time t is Si and the model λ.

Again, for the backward probability we can solve it as

follows:

(1) Initialization

bT(i) ¼ 1, 1 � i � N: ð4:12Þ

Here for the initialization step we arbitrarily define bT(i) to

be 1 for all i.

(2) Induction

bt(i)¼
P

N

i¼1

aijej(Otþ1)btþ1(j), t¼ T� 1, T� 2, . . . , 1, 1� i�N:

ð4:13Þ

The probability of being in state Si at time t and state S j at time

tþ 1 given the model and the observation can be defined as

follows to explain how the HMM parameters re-estimate ξt(i, j):

jt(i, j) ¼ P(qt ¼ Si, qtþ1 ¼ SjjO,l): ð4:14Þ

Also, the variable gt(i), which is the probability of being in

state Si at time t, given the observation sequence O and the

model λ, is defined as follows:

gt(i) ¼ P(qt ¼ SijO,l) : ð4:15Þ

This equation can be explained by using the forward and

backward probabilities as follows:

gt(i) ¼
at(i)bt(i)

P(Ojl)
¼

at(i)bt(i)
PN

i¼1 at(i)bt(i)
: ð4:16Þ

Then the relation between gt(i) and jt(i, j) after summing

over j is

gt(i) ¼
P

N

j¼1

jt(i, j) ¼
at(i)bt(i)

PN
i¼1 at(i)bt(i)

: ð4:17Þ

Now by summing gt(i) over the time index, the obtained

quantity can be interpreted as the expected number of times

that state Si is visited, or equally, the expected number of tran-

sitions from Si. Similarly, by summing jt(i, j) over time index,

the expected number of transitions from Si to Sj would be

obtained. By using the above formulae, the method for re-esti-

mation of HMM parameters l ¼ {E, A} can be achieved. Then,

the re-estimation of the model parameters in the maximization

step is defined as follows:

anewij ¼

PT�1
t¼1 jt(i, j)

PT�1
t¼1 gt(i)

ð4:18Þ

and

enewi (j) ¼

PT�1
t¼1,Ot¼j jt(i, j)
PT�1

t¼1 gt(i)
: ð4:19Þ

In equation (4.18),
PT�1

t¼1 jt(i, j) is the expected number of tran-

sitions from Si to Sj and
PT�1

t¼1 gt(i) is the expected number of

transitions fromSi to any state. Thus, the variable anewij can be inter-

preted as the probability of transition from Si to Sj, which is exactly

what it was supposed to be. For equation (4.19),
PT�1

t¼1,Ot¼j jt(i,j) is

the expected number of times in which the system is in the state Si
andwithobservation Ot ¼ j,which in this study indicates theprob-

ability distribution of firing for neuron j. The denominator again is

the expected numberof times the system is in state Si. Consequently,

variable enewi (j) is the probability of observing neuron j firing while

the system is in the stateSi. It has been provenbyDempster et al. [31]

that the re-estimated model is more likely than the initial model:

P(Ojlnew) . P(Ojl): As a result, we can find a new model by

which the observation of sequence is more likely to be generated,

as the model is led to a maximum-likelihood estimate.

Each detected UP–DOWN oscillation epoch was treated as a

separate trial that was used to train the HMM for each dataset.

The most probable sequence of hidden states was generated

using this HMM for each epoch. In this study, similar to Ponce-

Alvarez et al. [22], the re-estimation stops at the point the increase

in the log of the likelihood is less than a tolerance factor (10−6) or

it was not reached by the maximum number of iterations (500).

We reran the re-estimation algorithm ten times, each time by

using new initial parameters, to verify that the likelihood has

reached the global maximum likelihood and not only a local

maximum. For the emission matrix, the initial components

were chosen randomly, while for the transition matrix com-

ponents were randomly initialized as diagonal elements D in

the range (0.99–0.999), and for non-diagonal elements equal to

ð1�DÞ=(N � 1).

By using three-state HMM, the three states were identified as

the DOWN state, the UP-1 state and the UP-2 state. The DOWN

state was distinguished as a state with a very low mean firing

rate. The UP-1 state was characterized by having a slower PV

decorrelation time constant and longer duration than UP-2.

In order to check how much the result given by HMM is con-

sistent, and as it is technically impossible to use cross-validation for

our method, we used two methods to measure the stability of the

HMM result instead. In the first method, after finding all DOWN

states that were provided by the original HMM, the number of

all DOWN states was divided into halves. First, an HMM was

trained using only the data from the first half of the DOWN

states and the corresponding UP state that followed each DOWN

state. All the methods are the same except here we only used

approximately half of the data to feed to the HMM. Similarly,

another HMM was created using the second half of the DOWN

states and associated subsequent UP states. For the second

method, the DOWN states from the original HMM were split

into even and odd subsets. Once again, two new models were

trained using these two subsets and their subsequent UP states.

Finally, these four (first half, second half, odd and even) models

generated using these subsets of the original data were compared

against the initial HMM to check the consistency of the results

(electronic supplementary material, figure S3). The state sequence

for each epochwas obtained for each of thesemodels and eachwas

compared to the original HMM. The state sequence gives us the

most likely hidden state at each observation bin, using a 1 ms bin

size. Using only UP states that contained a transition between

UP-1 and UP-2, we found the percentage of bins that had the

same value as the original HMM. This was then averaged over

datasets. The average percentage agreement was similar for each

of the four different subsets, with 96.0% agreement for the odd

model, 95.8% for the even model, 96.0% for the first half model

and 95.6% for the second half model.

To investigate how much the neuron dynamics affected the

results of the states detected by the HMM, we performed two

types of shuffling of the unidimensional input data: the data

within each subtype found by the original HMM was shuffled
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(within subtypes) and the data within the entire UP state was

shuffled (entire UP state). This was then compared to the results

from the original model. Each shuffling method was performed

10 times. Additionally, neuron IDs were randomly shuffled

(neuron IDs). The 10 shuffles were compared against the original

HMMtodeterminehowmuch theneuron IDs influenced the results

(electronic supplementary material, figure S4a). Similar to the pre-

vious section, the percentage of bins from the state sequence that

were the same between the shuffled HMM and the original HMM

was calculated. This used data only from UP states that had a tran-

sition between UP-1 and UP-2 and their preceding DOWN state.

These were averaged over the ten shuffles and the datasets. Per

cent agreement was 70.4% for entire upstate shuffling, 96.5% for

neuron ID shuffling and 94.5% for within subtype shuffling. The

result that shuffling within each subtype and randomization of

neuron IDs did not affect the performance indicated that each sub-

type can be characterized by the neurons that change their firing

activity in each type. In fact, there are a small number of neurons

that change their firing rate between subtypes significantly (elec-

tronic supplementary material, figure S4b). They tended to be

high-firing rate neurons, presumably interneurons. We also con-

firmed that removing these high-firing rate neurons induced

drastic change in the subtype detections (data not shown),

suggesting that these highly active neurons, possibly interneurons,

may play a key role in distinguishing the UP subtypes.

(d) Template matching analysis
As we typically had six or eight segments as parts of the sequence

task, six or eight templates were generated for each session. Each

template starts when the animal departs from one reward point

and ends when the animal arrives at the next one. More precisely,

a segment was defined as the time between arrival at one reward

zone and arrival at the next reward zone, excluding times during

which MFB stimulation was delivered. Each row of the template

comprised the spike counts from one cell within a series of

100 ms bins covering one segment, averaged over all repetitions

of the sequence. Repetitions were first screened for segments that

took inordinately long (i.e. segments during which the rat was

off-task). For each segment, any repetitions during which the tra-

versal time exceeded four times the distance of the quartile from

themedianwere excluded. For the remaining repetitions, each seg-

ment was scaled so that traversal time equalled the median time.

The spikes from these scaled repetitions were then averaged in

100 ms bins [17]. In TM analysis, we used stable neurons that

were active during all parts of experiment and showed task-related

change in their firing rates. In order to measure the similarity of a

target matrix that is selected with the same size and dimensions as

a template, we used CC as defined in [24]. After TM was per-

formed the template was shuffled by randomly permuting

columns (column shuffle) and the TM procedure was performed

again. We used the column shuffle because it typically produced

the most conservative z-score compared to other shuffling (e.g.

bin shuffle, swap shuffle and shift shuffle [24]). This shuffling

was repeated 500 times. The mean and standard deviation of the

correlation values found for each time bin from these shuffled

TM results were used to z-score the original TM result. For the pur-

pose of investigating whether the reactivation happens faster than

the speed of the patterns during behaviour, we performed TM

analysis with a different range of compression factors between 1

and 10× [17]. To assess which compression factor is the best for

the specific dataset, we counted the number of significant peaks

of the TM results (e.g. the peaks> z-score = 5) and selected the com-

pression factor with the maximum number of the peaks. This

procedure was repeated for each template and the template with

the maximum number of the z-score peaks was selected as the

best overall template, and the corresponding compression rate

was selected as the best overall compression rate.

(e) Population vector decorrelation
Sequences of spike times for each neuron were binned using a bin

size of 1 ms to obtain the number of spikes fired within each bin. A

PV, defined as a vector containing the number of spikes fired for

each neuron within a bin, was created and compared against all

other PVs succeeding it within the specific subtype event by com-

puting the Pearson CC. These CCs were then averaged at each lag

across the different UP-1 andUP-2 states. An exponential function,

y ¼ a� expð�ðx=tÞÞ þ b, was fit using the data up to the point

where the correlation slope, which was smoothed using a 25 ms

moving average, changes from negative to positive after an initial

delay. The decay constant, τ, was found from the fit exponential.

( f ) Principal component analysis
To estimate how UP-1 and UP-2 can be distinguishably clustered,

each subtype event was represented by a vector of the mean firing

rate for each neuron within the subtype event and normalized

using z-score. These vectors were then concatenated together to

create a matrix on which the PCA was performed. The data were

then projected onto each principal component and the resulting

scores for the first two principal components were plotted against

each other to produce two clusters for each subtype. The quality of

these clusters was measured using cluster distance [25]. For each

cluster, the centroid was found by computing

ck ¼

PNk

i¼1 xki

Nk

ð4:20Þ

where xki is the two-dimensional projection for the ith subtype

event in cluster k with a size of Nk. Cluster distance

D ¼

P

k Dk

K
ð4:21Þ

was then calculated for each dataset, where

Dk ¼

P

p�Qk
kp� ckk

P

p[Qk
kp� ckk

�
Nk

N �Nk
, ð4:22Þ

and Qk is the set of all xki . This compares the distances from all

points within cluster k to its centroid to the distance of all other

points to centroid k.
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