000885761 001__ 885761
000885761 005__ 20210130010512.0
000885761 0247_ $$2doi$$a10.3390/su12208325
000885761 0247_ $$2Handle$$a2128/25942
000885761 0247_ $$2WOS$$aWOS:000583123600001
000885761 037__ $$aFZJ-2020-04070
000885761 041__ $$aEnglish
000885761 082__ $$a690
000885761 1001_ $$0P:(DE-Juel1)176878$$aKüpper, Mira$$b0$$eCorresponding author
000885761 245__ $$aAnalysis of Space Usage on Train Station Platforms Based on Trajectory Data
000885761 260__ $$aBasel$$bMDPI$$c2020
000885761 3367_ $$2DRIVER$$aarticle
000885761 3367_ $$2DataCite$$aOutput Types/Journal article
000885761 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1603258727_6349
000885761 3367_ $$2BibTeX$$aARTICLE
000885761 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885761 3367_ $$00$$2EndNote$$aJournal Article
000885761 520__ $$aFunctionality of railway platforms could be assessed by Level of Service concepts. They describe interactions between humans and the built environment and allow to rate risks due to overcrowding. To improve existing concepts, a detailed analysis of how pedestrians use the space is performed and new measurement and evaluation methods are introduced. Trajectories of passengers at platforms in Bern and Zurich Hardbrücke (Switzerland) are analysed. Boarding and alighting passengers show different behaviour, considering the travel paths, waiting times and mean speed. Density, speed and flow profiles are exploit and a new measure for the occupation of space is introduced. The Analysis has shown, that it is necessary to filter the data in order to reach a realistic assessment of the Level of Service.  Three main factors should be considered: the time of day, the times when trains arrive and depart and the platform side. Therefore, density, speed and flow profiles are averaged over the time of one minute and calculated depending on the train arrival. The methodology developed in this article is the basis for enhanced and more specific Level of Service concepts and offers the possibility to optimise planning of transportation infrastructures with regard to functionality and sustainability.
000885761 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000885761 588__ $$aDataset connected to CrossRef
000885761 7001_ $$0P:(DE-Juel1)132266$$aSeyfried, Armin$$b1
000885761 773__ $$0PERI:(DE-600)2518383-7$$a10.3390/su12208325$$gVol. 12, no. 20, p. 8325 -$$n20$$p8325 -$$tSustainability$$v12$$x2071-1050$$y2020
000885761 8564_ $$uhttps://juser.fz-juelich.de/record/885761/files/manuscript.v7-1.pdf$$yOpenAccess
000885761 8564_ $$uhttps://juser.fz-juelich.de/record/885761/files/sustainability-12-08325.pdf$$yOpenAccess
000885761 8564_ $$uhttps://juser.fz-juelich.de/record/885761/files/manuscript.v7-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885761 8564_ $$uhttps://juser.fz-juelich.de/record/885761/files/sustainability-12-08325.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885761 909CO $$ooai:juser.fz-juelich.de:885761$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885761 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176878$$aForschungszentrum Jülich$$b0$$kFZJ
000885761 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)176878$$a BUW: University of Wuppertal$$b0
000885761 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132266$$aForschungszentrum Jülich$$b1$$kFZJ
000885761 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)132266$$a BUW: University of Wuppertal$$b1
000885761 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000885761 9141_ $$y2020
000885761 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-15
000885761 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-15
000885761 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index$$d2020-01-15
000885761 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000885761 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUSTAINABILITY-BASEL : 2018$$d2020-01-15
000885761 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences$$d2020-01-15
000885761 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-15
000885761 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-15
000885761 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-15
000885761 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-15
000885761 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-15
000885761 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-15
000885761 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885761 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-15
000885761 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-15
000885761 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-01-15
000885761 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-15
000885761 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-15
000885761 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
000885761 980__ $$ajournal
000885761 980__ $$aVDB
000885761 980__ $$aUNRESTRICTED
000885761 980__ $$aI:(DE-Juel1)IAS-7-20180321
000885761 9801_ $$aFullTexts