001     885766
005     20220930130255.0
024 7 _ |a 10.3390/ijms21207683
|2 doi
024 7 _ |a 1422-0067
|2 ISSN
024 7 _ |a 1661-6596
|2 ISSN
024 7 _ |a 2128/26799
|2 Handle
024 7 _ |a altmetric:92547040
|2 altmetric
024 7 _ |a 33081390
|2 pmid
024 7 _ |a WOS:000585770700001
|2 WOS
037 _ _ |a FZJ-2020-04074
082 _ _ |a 540
100 1 _ |a Bukhdruker, Sergey
|0 0000-0002-0157-532X
|b 0
245 _ _ |a Hydroxylation of Antitubercular Drug Candidate, SQ109, by Mycobacterial Cytochrome P450
260 _ _ |a Basel
|c 2020
|b Molecular Diversity Preservation International
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1610976911_9652
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Spreading of the multidrug-resistant (MDR) strains of the one of the most harmful pathogen Mycobacterium tuberculosis (Mtb) generates the need for new effective drugs. SQ109 showed activity against resistant Mtb and already advanced to Phase II/III clinical trials. Fast SQ109 degradation is attributed to the human liver Cytochrome P450s (CYPs). However, no information is available about interactions of the drug with Mtb CYPs. Here, we show that Mtb CYP124, previously assigned as a methyl-branched lipid monooxygenase, binds and hydroxylates SQ109 in vitro. A 1.25 Å-resolution crystal structure of the CYP124–SQ109 complex unambiguously shows two conformations of the drug, both positioned for hydroxylation of the ω-methyl group in the trans position. The hydroxylated SQ109 presumably forms stabilizing H-bonds with its target, Mycobacterial membrane protein Large 3 (MmpL3). We anticipate that Mtb CYPs could function as analogs of drug-metabolizing human CYPs affecting pharmacokinetics and pharmacodynamics of antitubercular (anti-TB) drugs.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Varaksa, Tatsiana
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Grabovec, Irina
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Marin, Egor
|0 0000-0003-2369-1732
|b 3
700 1 _ |a Shabunya, Polina
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kadukova, Maria
|0 0000-0003-2514-2606
|b 5
700 1 _ |a Grudinin, Sergei
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Kavaleuski, Anton
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Gusach, Anastasiia
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Gilep, Andrei
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Borshchevskiy, Valentin
|0 P:(DE-Juel1)179072
|b 10
|e Corresponding author
700 1 _ |a Strushkevich, Natallia
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
773 _ _ |a 10.3390/ijms21207683
|g Vol. 21, no. 20, p. 7683 -
|0 PERI:(DE-600)2019364-6
|n 20
|p 7683 -
|t International journal of molecular sciences
|v 21
|y 2020
|x 1422-0067
856 4 _ |u https://juser.fz-juelich.de/record/885766/files/Invoice_MDPI_ijms-972270_1853.05EUR.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/885766/files/Hydroxylation%20of%20Antitubercular%20Drug%20Candidate%2C%20SQ109%2C%20by%20Mycobacterial%20Cytochrome%20P450.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/885766/files/Invoice_MDPI_ijms-972270_1853.05EUR.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:885766
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)179072
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Engineering Cell Function
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J MOL SCI : 2018
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21