000885767 001__ 885767 000885767 005__ 20240610120455.0 000885767 0247_ $$2doi$$a10.1016/j.ultramic.2020.113098 000885767 0247_ $$2ISSN$$a0304-3991 000885767 0247_ $$2ISSN$$a1879-2723 000885767 0247_ $$2Handle$$a2128/26584 000885767 0247_ $$2pmid$$a33161222 000885767 0247_ $$2WOS$$aWOS:000600833500013 000885767 037__ $$aFZJ-2020-04075 000885767 041__ $$aEnglish 000885767 082__ $$a570 000885767 1001_ $$0P:(DE-Juel1)162274$$aDiehle, Patrick$$b0$$eCorresponding author 000885767 245__ $$aA cartridge-based turning specimen holder with wireless tilt angle measurement for magnetic induction mapping in the transmission electron microscope 000885767 260__ $$aAmsterdam$$bElsevier Science$$c2020 000885767 3367_ $$2DRIVER$$aarticle 000885767 3367_ $$2DataCite$$aOutput Types/Journal article 000885767 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1608542156_32063 000885767 3367_ $$2BibTeX$$aARTICLE 000885767 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000885767 3367_ $$00$$2EndNote$$aJournal Article 000885767 520__ $$aMagnetic induction mapping in the transmission electron microscope using phase contrast techniques such as off-axis electron holography and differential phase contrast imaging often requires the separation of the magnetic contribution to the recorded signal from the electrostatic contribution. When using off-axis electron holography, one of the experimental approaches that can be used to achieve this separation is to evaluate half of the difference between phase shift images that have been recorded before and after turning the sample over. Here, we introduce a cartridge-based sample mounting system, which is based on an existing on-axis tomography specimen holder and can be used to turn a sample over inside the electron microscope, thereby avoiding the need to remove the holder from the microscope to turn the sample over manually. We present three cartridge designs, which are compatible with all pole piece designs and can be used to support conventional 3-mm-diameter sample grids, Si3N4-based membrane chips and needle-shaped specimens. We make use of a wireless inclinometer that has a precision of 0.1° to monitor the sample holder tilt angle independently of the microscope goniometer readout. We also highlight the need to remove geometrical image distortions when aligning pairs of phase shift images that have been recorded before and after turning the sample over. The capabilities of the cartridge-based specimen holder and the turning approach are demonstrated by using off-axis electron holography to record magnetic induction maps of lithographically-patterned soft magnetic Co elements, a focused ion beam milled hard magnetic Nd-Fe-B lamella and an array of four Fe3O4 nanocrystals. 000885767 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0 000885767 536__ $$0G:(EU-Grant)823717$$aESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)$$c823717$$fH2020-INFRAIA-2018-1$$x1 000885767 536__ $$0G:(EU-Grant)856538$$a3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)$$c856538$$fERC-2019-SyG$$x2 000885767 536__ $$0G:(DE-Juel-1)Z1422.01.18$$aDARPA, Phase 2 - Defense Advanced Research Projects Agency Manipulation of magnetic skyrmions for logicin- memory applications (Z1422.01.18)$$cZ1422.01.18$$x3 000885767 588__ $$aDataset connected to CrossRef 000885767 7001_ $$0P:(DE-Juel1)144926$$aKovács, András$$b1$$ufzj 000885767 7001_ $$0P:(DE-Juel1)159364$$aDuden, Thomas$$b2 000885767 7001_ $$0P:(DE-Juel1)130980$$aSpeen, Rolf$$b3 000885767 7001_ $$0P:(DE-HGF)0$$aŽagar Soderžnik, Kristina$$b4 000885767 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b5$$ufzj 000885767 773__ $$0PERI:(DE-600)1479043-9$$a10.1016/j.ultramic.2020.113098$$gp. 113098 -$$p113098 -$$tUltramicroscopy$$v14$$x0304-3991$$y2020 000885767 8564_ $$uhttps://juser.fz-juelich.de/record/885767/files/Turning_Holder_manuscript.pdf$$yRestricted 000885767 8564_ $$uhttps://juser.fz-juelich.de/record/885767/files/1-s2.0-S0304399120302497-main.pdf$$yOpenAccess 000885767 8767_ $$8OAD0000071742$$92020-09-29$$d2020-10-26$$eHybrid-OA$$jZahlung erfolgt$$zBelegnr. 1200158363 000885767 909CO $$ooai:juser.fz-juelich.de:885767$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire 000885767 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162274$$aForschungszentrum Jülich$$b0$$kFZJ 000885767 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b1$$kFZJ 000885767 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b5$$kFZJ 000885767 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0 000885767 9141_ $$y2020 000885767 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-17 000885767 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-17 000885767 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-17 000885767 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-17 000885767 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-17 000885767 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000885767 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bULTRAMICROSCOPY : 2018$$d2020-01-17 000885767 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-17 000885767 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-17 000885767 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-17 000885767 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-17 000885767 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000885767 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-17 000885767 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-17 000885767 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-17 000885767 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-17 000885767 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-17 000885767 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-17$$wger 000885767 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-17 000885767 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0 000885767 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x1 000885767 9801_ $$aAPC 000885767 9801_ $$aFullTexts 000885767 980__ $$ajournal 000885767 980__ $$aVDB 000885767 980__ $$aUNRESTRICTED 000885767 980__ $$aI:(DE-Juel1)PGI-5-20110106 000885767 980__ $$aI:(DE-Juel1)ER-C-1-20170209 000885767 980__ $$aAPC 000885767 981__ $$aI:(DE-Juel1)ER-C-1-20170209