000885770 001__ 885770
000885770 005__ 20240313103123.0
000885770 0247_ $$2doi$$a10.12751/NNCN.BC2020.0080
000885770 0247_ $$2Handle$$a2128/25924
000885770 037__ $$aFZJ-2020-04078
000885770 041__ $$aeng
000885770 1001_ $$0P:(DE-Juel1)176777$$aEssink, Simon$$b0$$eCorresponding author$$ufzj
000885770 1112_ $$aBernstein Konferenz 2020$$conline$$d2020-09-29 - 2020-10-01$$gBC20$$wGermany
000885770 245__ $$aUltra-high frequency spectrum of neuronal activity
000885770 260__ $$c2020
000885770 3367_ $$033$$2EndNote$$aConference Paper
000885770 3367_ $$2BibTeX$$aINPROCEEDINGS
000885770 3367_ $$2DRIVER$$aconferenceObject
000885770 3367_ $$2ORCID$$aCONFERENCE_POSTER
000885770 3367_ $$2DataCite$$aOutput Types/Conference Poster
000885770 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1603108681_24522$$xOther
000885770 520__ $$aThe activity of spiking network models exhibits fast oscillations (>200 Hz), caused by inhibition-dominated excitatory-inhibitory loops [1, 2]. As correlations between pairs of neurons are weak in nature and models, fast oscillations have so far received little attention.Today’s models of cortical networks with natural numbers of neurons and synapses [3] remove any uncertainty about down-scaling artifacts [4]. Fast oscillations here arise as vertical stripes in raster diagrams. We discuss experimental detectability of oscillations, ask whether they are an artifact of simplified models, and identify adaptations to control them.The population rate spectrum decomposes into single-neuron power spectra (∼N) and cross-spectra of pairs of neurons (∼N2) [5,6]. For low numbers of neurons (100) and weak correlations, the single-neuron spectra dominate the compound spectrum. Coherent oscillations in the population activity may thus go unnoticed in experimental spike recordings. Population measures obtained from large neuron ensembles (e.g., LFP), however, should show a pronounced peak.Cortical network models allow an investigation from different angles. We rule out artifacts of time-discrete simulation and investigate the effect of distributed synaptic delays: exponential distributions decrease the oscillation amplitude, expected by their equivalence to low-pass filtering [7], whereas truncated Gaussian distributions are ineffective.Surprisingly, a model of V1 [8], with the same architecture, but fewer synapses per neuron, does not exhibit fast oscillations. Mean-field theory shows that loops within each inhibitory population cause fast oscillations. Peak frequency and amplitude are determined by eigenvalues of the effective connectivity matrix approaching instability [9]. Reducing the connection density decreases the eigenvalues, increasing their distance to instability; we thus expect weaker oscillations.Counter to expectation and simulation, mean-field theory predicts an increase, explained by an overestimation of the transfer function at high frequencies [10]: the initial network appears to be linearly unstable, with |λ|>1; reduced connectivity seemingly destabilizes the system. A semi-analytical correction restores qualitative agreement with simulation.The work points at the importance of models with realistic cell densities and connectivity, and illustrates the productive interplay of simulation-driven and analytical approaches.References    1. Brunel, N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. JComputNeurosci 8, 183–208 (2000)., 10.1371/journal.pcbi.1006359    2. Brunel, N. & Wang, X.-J. What Determines the Frequency of Fast Network Oscillations With Irregular Neural Discharges? I. Synaptic Dynamics and Excitation-Inhibition Balance. JNeurophysiol 90, 415–430 (2003)., 10.1152/jn.01095.2002    3. Potjans, T. C. & Diesmann, M. The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-Scale Spiking Network Model. CerebCortex 24, 785–806 (2014)., 10.1093/cercor/bhs358    4. van Albada, S. J., Helias, M. & Diesmann, M. Scalability of asynchronous networks is limited by one-to-one mapping between effective connectivity and correlations. ploscb 11, e1004490 (2015)., 10.1371/journal.pcbi.1004490    5. Harris, K. D., & Thiele, A. Cortical state and attention. Nature Reviews Neuroscience, 12(9), 509-523 (2011)., 10.1038/nrn3084    6. Tetzlaff, T., Helias, M., Einevoll, G. T., & Diesmann, M. Decorrelation of neural-network activity by inhibitory feedback. PLoS Comput Biol, 8(8), e1002596 (2012)., 10.1371/journal.pcbi.1002596    7. Mattia, M., Biggio, M., Galluzzi, A. & Storace, M. Dimensional reduction in networks of non-Markovian spiking neurons: Equivalence of synaptic filtering and heterogeneous propagation delays. PLoS Comput Biol 15, e1007404 (2019)., 10.1371/journal.pcbi.1007404    8. Schmidt, M. et al. A multi-scale layer-resolved spiking network model of resting-state dynamics in macaque visual cortical areas. ploscb 14, e1006359 (2018)., 10.1023/a:1008925309027    9. Bos, H., Diesmann, M. & Helias, M. Identifying Anatomical Origins of Coexisting Oscillations in the Cortical Microcircuit. ploscb 12, e1005132 (2016)., 10.1371/journal.pcbi.1005132    10. Schuecker, J., Diesmann, M. & Helias, M. Modulated escape from a metastable state driven by colored noise. Phys. Rev. E (2015)., 10.1103/PhysRevE.92.052119
000885770 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000885770 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x1
000885770 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$x2
000885770 536__ $$0G:(GEPRIS)368482240$$aGRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)$$c368482240$$x3
000885770 536__ $$0G:(DE-Juel1)aca_20190115$$aAdvanced Computing Architectures (aca_20190115)$$caca_20190115$$fAdvanced Computing Architectures$$x4
000885770 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x5
000885770 588__ $$aDataset connected to DataCite
000885770 7001_ $$0P:(DE-HGF)0$$aHelin, Runar$$b1
000885770 7001_ $$0P:(DE-HGF)0$$aShimoura, Renan$$b2
000885770 7001_ $$0P:(DE-Juel1)162130$$aSenk, Johanna$$b3$$ufzj
000885770 7001_ $$0P:(DE-Juel1)145211$$aTetzlaff, Tom$$b4$$ufzj
000885770 7001_ $$0P:(DE-Juel1)138512$$avan Albada, Sacha$$b5$$ufzj
000885770 7001_ $$0P:(DE-Juel1)144806$$aHelias, Moritz$$b6$$ufzj
000885770 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b7$$ufzj
000885770 7001_ $$0P:(DE-Juel1)169781$$aPlesser, Hans Ekkehard$$b8$$ufzj
000885770 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b9$$ufzj
000885770 773__ $$a10.12751/NNCN.BC2020.0080
000885770 8564_ $$uhttp://doi.org/10.12751/nncn.bc2020.0080
000885770 8564_ $$uhttps://juser.fz-juelich.de/record/885770/files/P61_Essink_Bernstein_2020.pdf$$yOpenAccess
000885770 8564_ $$uhttps://juser.fz-juelich.de/record/885770/files/P61_Essink_Bernstein_2020.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885770 909CO $$ooai:juser.fz-juelich.de:885770$$pec_fundedresources$$pdriver$$pVDB$$popen_access$$popenaire
000885770 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176777$$aForschungszentrum Jülich$$b0$$kFZJ
000885770 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162130$$aForschungszentrum Jülich$$b3$$kFZJ
000885770 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145211$$aForschungszentrum Jülich$$b4$$kFZJ
000885770 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138512$$aForschungszentrum Jülich$$b5$$kFZJ
000885770 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144806$$aForschungszentrum Jülich$$b6$$kFZJ
000885770 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b7$$kFZJ
000885770 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169781$$aForschungszentrum Jülich$$b8$$kFZJ
000885770 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b9$$kFZJ
000885770 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000885770 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x1
000885770 9141_ $$y2020
000885770 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885770 920__ $$lyes
000885770 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000885770 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000885770 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000885770 9801_ $$aFullTexts
000885770 980__ $$aposter
000885770 980__ $$aVDB
000885770 980__ $$aUNRESTRICTED
000885770 980__ $$aI:(DE-Juel1)INM-6-20090406
000885770 980__ $$aI:(DE-Juel1)IAS-6-20130828
000885770 980__ $$aI:(DE-Juel1)INM-10-20170113
000885770 981__ $$aI:(DE-Juel1)IAS-6-20130828