
Exascale potholes for HPC:
Execution performance and variability analysis

of the flagship application code HemeLB
Brian J. N. Wylie

Jülich Supercomputing Centre
Forschungszentrum Jülich GmbH

Jülich, Germany
b.wylie@fz-juelich.de
0000-0003-2770-2443

Abstract—Performance measurement and analysis of paral-
lel applications is often challenging, despite many excellent
commercial and open-source tools being available. Currently
envisaged exascale computer systems exacerbate matters by
requiring extremely high scalability to effectively exploit millions
of processor cores. Unfortunately, significant application execu-
tion performance variability arising from increasingly complex
interactions between hardware and system software makes this
situation much more difficult for application developers and
performance analysts alike.

This work considers the performance assessment of the
HemeLB exascale flagship application code from the EU HPC
Centre of Excellence (CoE) for Computational Biomedicine
(CompBioMed) running on the SuperMUC-NG Tier-0 leadership
system, using the methodology of the Performance Optimisation
and Productivity (POP) CoE. Although 80% scaling efficiency
is maintained to over 100,000 MPI processes, disappointing
initial performance with more processes and corresponding poor
strong scaling was identified to originate from the same few
compute nodes in multiple runs, which later system diagnostic
checks found had faulty DIMMs and lacklustre performance.
Excluding these compute nodes from subsequent runs improved
performance of executions with over 300,000 MPI processes by a
factor of five, resulting in 190× speed-up compared to 864 MPI
processes. While communication efficiency remains very good up
to the largest scale, parallel efficiency is primarily limited by load
balance found to be largely due to core-to-core and run-to-run
variability from excessive stalls for memory accesses, that affect
many HPC systems with Intel Xeon Scalable processors. The POP
methodology for this performance diagnosis is demonstrated via a
detailed exposition with widely deployed ‘standard’ measurement
and analysis tools.

Index Terms—execution performance measurement/analysis;
variability detection; parallel applications; POP; HPC; exascale

I. INTRODUCTION

Current HPC computer systems have many compute nodes
comprising multi-socket multi-core hyperthreaded vectorised
turbo-boosted power-throttled CPU processors often with
attached accelerators (GPUs and sometimes FPGAs), with
multiple levels of caches for accesses to local and NUMA
memory of limited size, connected via hierarchical networks
with multiple switches. Whereas homogeneous systems were
once common, as heterogeneity is incorporated in all aspects

to improve energy efficiency, they are now the exception
for the largest (and exascale-candidate) systems [1]. Highly-
scalable HPC applications running on these systems, however,
are mostly still programmed with explicit message-passing
using MPI between compute nodes (or sockets) and multi-
threading using OpenMP within shared-memory domains [2],
while exploitation of accelerators covers a wide gamut from
standardised OpenMP target offload down to GPU-specific
languages such as CUDA and ROCm [3].

Application file I/O is a common scalability bottleneck,
while shared parallel filesystems such as GPFS and Lustre typ-
ically introduce substantial execution time variability between
and within compute jobs. Other major sources of variability
arise from system daemon processes that periodically take
CPU resources [4], as well as turbo-boost and power throttling
that dynamically adjust processing speed of CPUs. All of these
sources of run-to-run, node-to-node, core-to-core and iteration-
to-iteration execution variability typically don’t affect correct-
ness1, but can have substantial impact on performance. Since
the variability is so complex, AI data analytics techniques are
proposed to facilitate their analysis [5].

The challenges for application developers presented by this
relentlessly increasing complexity of HPC computer systems
(and the applications themselves) are troublesome, as efficient
scalable codes are predicated on a clear understanding of cur-
rent and future application requirements (including hardware
and software roadmaps) and often take large teams many
years. Many nations have recognised this and provide targetted
funding to assist: for application developers in Europe, in
addition to PRACE/SHAPE2 (specifically supporting SMEs
to parallelise their existing application codes) and related
programmes, Horizon2020/EuroHPC funds a variety of HPC
Centres of Excellence (CoEs)3.

Most of the HPC CoEs address specific application do-
mains, however, the transversal Performance Optimisation and

1otherwise expensive fault-detection and recovery beyond occassional
checkpoint/restart is required

2http://www.prace-ri.eu/hpc-access/shape-programme/
3https://www.focus-coe.eu/index.php/centres-of-excellence-in-hpc-applications/



Productivity (POP) CoE4 supports all fields of HPC, with
emphasis on supporting the HPC CoEs as well as European
industry (and particularly SMEs since they tend not to have the
necessary resources and skills in house). POP provides training
in parallel performance analysis, using the partners’ own open-
source tools as well as third-party tools, in addition to parallel
performance assessment and proof-of-concept prototype ser-
vices which are free-of-charge for application developers from
European institutions.

This paper examines a POP performance assessment of an
HPC CoE exascale flagship application code on one of the
European Tier-0 leadership HPC systems at its full scale.
The basic POP analysis methodology is demonstrated with
the “pretty standard” Scalasca toolset, which identifies com-
pute nodes with severely degraded performance that need to
be avoided and then investigates performance variability in
widely-deployed commodity Intel Xeon Scalable processors.
This variability is subsequently found to substantially impact
the achieved performance of this code and several others
on many top-tier computer systems, motivating the need for
widespread adoption of such methodology and tools to identify
and ultimately circumvent these issues.

II. METHODOLOGY

A. Subject application HemeLB

The open-source HemeLB software5 developed by Univer-
sity College London and others within the EU HPC CoE
for Computational Biomedicine (CompBioMed6) is their flag-
ship solver for high-performance parallel lattice-Boltzmann
simulations of large-scale three-dimensional hæmodynamic
flow in vascular geometries. It supports a range of collision
kernels and boundary conditions, and is optimised for sparse,
patient-specific geometries. HemeLB has traditionally been
used to model cerebral bloodflow, and is now being applied to
simulating the fully-coupled human arterial and venous trees
with high fidelity [6].

HemeLB has been previously demonstrated to scale excep-
tionally well up to 100,000 cores [7]. Furthermore, the code
was recently found to scale with 80% efficiency on 288,000
AMD 6276 Bulldozer-based Interlagos processor cores of
18,000 Cray XE nodes of NCSA Blue Waters7. More recent
development focusses on SuperMUC-NG which is based on
newer processors with more cores.

B. Execution environment

The Lenovo ThinkSystem SD650 supercomputer
SuperMUC-NG8 at Leibniz-Rechenzentrum (LRZ, Germany)
comprises 6480 compute nodes with dual 24-core Intel Xeon
Platinum 8174 @ 3.10 GHz (‘Skylake’) processors [8]. 144
‘fat’ compute nodes each have 768 GB memory, compared to
only 96 GB memory for the remaining 6336 ‘thin’ compute

4https://www.pop-coe.eu/
5http://www.hemelb.org/
6http://www.compbiomed.eu/
7https://bluewaters.ncsa.illinois.edu/
8https://doku.lrz.de/display/PUBLIC/SuperMUC-NG

nodes bundled into eight domains (known as ‘islands’).
The internal interconnect is an Intel OmniPath network,
with a fat-tree topology within islands and 1:4 pruned
connection between islands. A high-performance 50 TB
parallel filesystem is provided by IBM Spectrum Scale
(GPFS), with SUSE Linux Enterprise Server (SLES) 12 SP3
operating system.

HemeLB was built with Intel 19.0.4.243 compilers and
MPI library. It was configured to use MPI-3 shared-memory
windows within each compute node to reduce memory re-
quirements when loading the initial lattice data. For scalability
testing, a cerebral arterial circle of Willis geometry dataset
of 21.15 GiB was used (corresponding to a lattice spacing of
approximately 6.4 microns) [9]. This comprises 1,138,236,832
blocks (1376×1087×761), of which 20,740,240 are non-
empty and there are a total of 10,154,448,502 lattice sites.
After reading and distributing this dataset, the time to sim-
ulate blood flow for 5000 lattice time steps (without writing
intermediate or final state) was recorded for this strong scal-
ing benchmark on SuperMUC-NG. 48 MPI processes were
executed on each compute node (i.e., one per core, not using
additional hardware threads per core) with processes bound to
cores and socket-local memory.9

Memory requirements as reported by the HemeLB code
are shown in Figure 1(a). With 768 GiB ‘fat’ compute nodes,
executions ran with 864 to 6,144 MPI processes (on 18 to
128 compute nodes), whereas executions with 12,288 and
more MPI processes ran on regular ‘thin’ compute nodes (with
96 GB memory). Requiring more then 2 GiB per process for
executions with 9,216 MPI processes on 192 compute nodes,
this configuration was not possible on SuperMUC-NG.10

Generally only a single execution was done at each scale,
during regular operation of SuperMUC-NG, apart from the
very largest runs requiring more than half of the total compute
nodes which could only be done in a special dedicated session
after system maintenance. Since the initial runs requiring
more than 3,072 compute nodes repeatedly performed poorly,
measurements were taken and analysed to identify the cause,
such that runs could be done which delivered performance in
line with expectations.

C. Scalability of simulation time and efficiency

Simulation time for different numbers of compute nodes is
plotted in Figure 1(b), along with a dotted line representing
perfect linear scaling. Simulation time speedup relative to
the smallest execution configuration (18 compute nodes) is
more than 190-fold obtained for 360-fold increase in compute
nodes, with more than 80% scaling efficiency to over 100,000
processes.

With 792 compute nodes bundled within island domains,
and islands connected via an additional switch, it is no-
table that no significant simulation performance advantage
was observed when inter-domain switches were avoided or

9SLURM: ntasks-per-node=48, cpus-per-task=1, cpu-bind=cores, mem-
bind=local

10but done instead on JUWELS Cluster at JSC, as reported later



96 192 256 384 512 768 1024 1536 2048 3072 4096128 648024 32 48 6418

Compute nodes (48c)

0

2

4

6

8

10

12

14

16

M
e

a
n

 p
e

r-
p

ro
c
e

s
s
 m

e
m

o
ry

 [
G

iB
]

8
6

4

1
,1

5
2

1
,5

3
6

2
,3

0
4

3
,0

7
2

4
,6

0
8

6
,1

4
4

9
,2

1
6

1
2

,2
8

8

1
8

,4
3

2

2
4

,5
7

6

3
6

,8
6

4

4
9

,1
5

2

7
3

,7
2

8

9
8

,3
0

4

1
4

7
,4

5
6

1
9

6
,6

0
8

3
0

9
,6

9
6

P
ro

c
e

s
s
e

s

15700
12600

9520

5980
4680

3060
2520

1240

826

638

421

322

220
170

122
103

83

156

438

175

405

96 192 256 384 512 768 1024 1536 2048 3072 4096128 648024 32 48 6418

Compute nodes (48c)

100

1000

10000

T
im

e
 [

s
]

8
6
4

1
,1

5
2

1
,5

3
6

2
,3

0
4

3
,0

7
2

4
,6

0
8

6
,1

4
4

9
,2

1
6

1
2
,2

8
8

1
8
,4

3
2

2
4
,5

7
6

3
6
,8

6
4

4
9
,1

5
2

7
3
,7

2
8

9
8
,3

0
4

1
4
7
,4

5
6

1
9
6
,6

0
8

3
0
9
,6

9
6

P
ro

c
e

s
s
e

s

Simulate
(initial)

(a) Memory requirements (b) Execution time
Fig. 1. Scaling of HemeLB memory requirements and simulation time for 5000 lattice update steps with coW-6.4um.gmy geometry dataset on SuperMUC-NG.
Execution of 9216 processes on 192 compute nodes is not possible due to insufficient nodes with adequate memory. Initial executions on the dedicated system
performed much less well than expected (brown datapoints compared to dotted line), requiring poorly-performing compute nodes to be explicitly excluded
for satisfactory executions.

reduced. Small numbers of failed compute nodes throughout
SuperMUC-NG can therefore conveniently be avoided when
allowing full flexibility in allocating partitions.

HemeLB executions have been audited on different com-
puter systems by the POP CoE. These performance assess-
ments using a methodology [10] based on measurements
taken with the highly scalable open-source Scalasca/Score-P
toolset [11] found very good computation scaling and commu-
nication efficiencies, while identifying memory consumption
and load balance as key issues.

Score-P was used to prepare a HemeLB executable where
(by default) application routines are instrumented by the
compiler and special measurement libraries are linked inter-
posing on MPI library routines. Initial measurements suffered
from excessive overheads due to very frequent executions
of MPI_Comm_size, MPI_Comm_rank and lots of small
C++ methods (particularly from the standard libraries). A
custom installation of Score-P was therefore made to avoid
instrumentation of the uninteresting MPI routines, and the
Intel compiler directed to only instrument key application
routines specified via a file listing their signatures. While this
brought measurement dilation down to an acceptable level of
around 3%, execution tracing was still prohibitive due to the
huge amount of MPI operations during HemeLB initialisation.
The application code was therefore manually annotated with
directives to pause recording when executing the initialisation
phase, allowing detailed measurement and analysis of the
subsequent simulation phase.

Scalasca analysis reports can be interactively explored us-
ing the CUBE GUI. Using an execution with 13824 MPI
processes as an example, Figure 2 shows efficiency metrics
calculated by CUBE for the selected callpath, in this case
RunSimulation where 32% of execution time is spent:

most of the execution time is initialisation, captured here as
MEASUREMENT OFF.

CUBE presents the detailed measurements and analyses
from Scalasca/Score-P in various ways. A three-pane presenta-
tion of metrics, callpaths and processes/threads in hierarchical
trees is shown in Figure 2 — where selections determine
values shown in panels from left to the right, and expanding
tree nodes reveals the next level of internal detail — to
naturally support exploration of huge amounts of execution
performance data.

D. Localisation of degraded performance

For the initial measurement with 300,000 MPI processes
the initial CUBE assessment of execution efficiency shown
in Figure 3 already highlit very poor load balance of 0.49
(whereas communication efficiency remained a very good
0.97). This was confirmed by examining the computation
time per process distribution statistics, whereas the number
of instructions completed (from the PAPI_TOT_INS counter
captured in the measurement) showed very little variation
confirming that all processes did roughly the same amount
of useful computation.

However, another hardware counter metric for resource
stall cycles (PAPI_RES_STL) shown in Figure 4 provided
insight into the imbalance problem. On one compute node,
all 24 of the MPI processes with odd-numbered ranks in the
MPI_COMM_WORLD global communicator suffered 12 times
the mean number of resource stall cycles. Closer examination
also revealed a second compute node with elevated resource
stall cycles for its even-numbered MPI ranks compared with
all of is peer processes. These same two compute nodes were
also the culprits in the other measurements with degraded
performance, and after explicitly excluding them from sub-



Fig. 2. Scalasca/CUBE analysis report explorer presentation of HemeLB execution on SuperMUC-NG with 13,824 MPI processes. From the hierarchy of
metrics in the left panel, which includes metrics determined from analysis of the execution trace, time exclusively for computation has been selected, and this
metric shown in panels to the right. From the call-tree hierarchy in the middle panel, the HandleActors part of RunSimulation has been selected, and
computation time exclusively for this callpath is presented in the right panel for each MPI process. The times for each MPI process have been sorted and
shown as percentages of that with the largest value, rank 3474 in MPI COMM WORLD. Next to each numeric value in the trees is a small box coloured
from white through yellow and orange to red according to its percentage of the total metric value to facilitate identification of those which are most significant.
Below the main window is an identically coloured topology map, where each column corresponds to the 48 processes (increasing top to bottom) on a
compute node (increasing to the right), from which processes 3474 and 7782 stand out from the others with their much higher computation times. Overlaid
on the main window are two additionally detached tabs: one showing the distribution of computation times of the processes, and the other an assessment of
RunSimulation execution identifying load balance efficiency of only 0.49 as the critical factor.



Fig. 3. CUBE presentation of efficiency metrics for RunSimulation phase of execution of HemeLB on SuperMUC-NG with 300,000 MPI processes.
While communication efficiency of 0.97 is very good, load balance efficiency of 0.16 is very poor.

Fig. 4. Scalasca/CUBE analysis report explorer presentation of HemeLB execution on SuperMUC-NG with 300,000 MPI processes. The main window has
PAPI_RES_STL selected in the Metric tree and the HandleActors callpath within RunSimulation/DoTimeStep selected in the Call tree panels.
For this combination, the metric values for all processes, as percentages of the largest peer value, are shown in the System tree panel and separately in the
(detached) Statistics chart and Process topology panel (folded such that each row has the processes of ten compute nodes). It is immediately clear that all
of the 24 processes with odd MPI ranks in MPI_COMM_WORLD on node i02r08c05s07 have more than 14x the resource stall cycles of any others, and
closer examination further reveals node i04r01c05s10 also has values for its even MPI ranks considerably elevated beyond all others.



TABLE I
HEMELB EXECUTION EFFICIENCY AND SCALING RELATIVE TO 1,152 PROCESSES ON 24 COMPUTE NODES OF SUPERMUC-NG.

Global scaling efficiency is the product of parallel efficiency and computation scaling.
Parallel efficiency is the ratio of mean computation time to total runtime of all processes.

Load balance efficiency is the mean/maximum ratio of computation time outside of MPI.
Communication efficiency is the ratio of maximum computation time to total runtime.

Serialisation efficiency is estimated from idle time within communications where no data is transferred.
Transfer efficiency relates to essential time spent in data transfers.

Computation scaling is the relative total time in computation (outside of MPI).
Instructions scaling is the relative total number of instructions executed (outside of MPI).
IPC scaling is the relative value of instructions executed (outside of MPI) per CPU cycle.

(Scaling efficiencies are relative to a serial execution or the smallest parallel execution configuration.)

sequent executions 5 times faster simulation performance was
obtained.

Diagnostic checks run on those nodes by the system admin-
istrators after they had been taken out of production identified
that they had faulty DIMMs and lacklustre performance,
needing the DIMMs to be replaced.

E. Efficiency analysis

For the updated Scalasca/Score-P measurements of
HemeLB executions on SuperMUC-NG with up to 6,452
compute nodes (309,696 MPI processes), Table I summarises
their performance assessment. Computational instructions re-
tired per clock cycle (IPC) was a reasonable 1.9, compared
to 1.4 for the smaller execution configurations, suggesting
better cache efficiency as the lattice partitions get smaller.
Perfect instruction scaling up to 768 compute nodes there-
after deteriorates as there is more processing of lattice block
boundaries compared to their interiors. Since these two effects
counteract each other, very good computation scaling above
0.87 is sustained. Efficient non-blocking communication to
exchange fluid particles between neighbouring lattice blocks
maintains excellent communication efficiency above 0.97. The
most significant inefficiency at all scales tested is load balance,
generally around 0.80 but dropping to 0.72 in some larger
execution configurations. While this is still fairly good, it
presents the largest opportunity for performance improvement
and warrants more in-depth investigation.

F. Investigation of load balance

Investigation of the breakdown of (MPI) communication
versus computation time of each process showed that one
or a few processes spend essentially no time waiting for the
non-blocking point-to-point MPI communication to complete
during the simulation phase. Since these processes are fully
occupied with computation for longer than the others, by

the time they reach the MPI_Wait the incoming messages
for them have already been received into the corresponding
buffers. This is characteristic of computational load imbalance.

The HemeLB ‘basic decomposition’ method for splitting the
lattice grid into parts for each process was already known to
result in a notable imbalance, with many of the higher-ranked
processes given disconnected sections that result in additional
computation for them. The decomposition is expected to be
deterministic, however, allowing comparison between runs.
This was verified by comparing the numbers of lattice blocks
and sites allocated to each process, which matched exactly.
Similarly, the number of messages and the amount of data sent
and received by each process also matched exactly, verifying
that the pattern of communication was also identical.

G. Computation time variation

In different runs with the same number of processes the
communication time can be expected to vary, both due to the
mapping of processes to different compute nodes distributed
throughout SuperMUC-NG (in some cases requiring additional
communication inter-island hops via top-level switches) and
also contention on those communication paths shared with
other applications concurrently executing on the system [12].11

While the first aspect can be addressed by forcing execution
on identical machine partitions, e.g. doing multiple runs con-
secutively within a single job (Figure 5), avoiding possible
communication interference from other applications can only
be achieved via dedicated use of islands or the entire computer
system (i.e., single user execution).

Figure 5 shows the amount of HemeLB work per MPI
process, represented by the number of blocks of lattice sites
they were assigned (which is identical in both runs), and
the corresponding measured computation time (which varies

11There is no isolation of job partitions as on IBM Blue Gene systems.



0 1152 2304 3456 4608 5760 6912 8064 9216 10368 11520 12672 13824

Process rank

0

250

500

750

1000

1250

Blocks [10]: max=5589

Comp [s]: max=1144.8 @6820

0 1152 2304 3456 4608 5760 6912 8064 9216 10368 11520 12672 13824

Process rank

0

250

500

750

1000

1250

Blocks [10]: max=5589

Comp [s]: max=1132.4 @10019

(a) 1st run in job (b) 2nd run in job
Fig. 5. Distribution of the number of blocks of lattice sites (in tens, blue points) and resulting computation time (in seconds, red points) per MPI process
rank for consecutive executions of HemeLB within a single job on same partition, showing locations of outliers moving from run to run and substantially
degrading execution performance.

only slightly apart from outliers, the worst of which are
circled in each run). While the amount of computation and
communication are not perfectly balanced, they do not change
between runs. The mean computation time in both cases is 810
seconds, however, it is more relevant to compare the outliers to
the usual maximum of approximately 1000 seconds (i.e. from
processes with no significant memory stall cycles): the outliers
of 1144 and 1132 seconds therefore result in a degradation of
around 14%.

Of course, MPI waiting time of each process also depends
on when the corresponding partner processes are ready to
initiate point-to-point communication, which can be delayed
when they require longer for their computational tasks.

Comparison of the number of instruc-
tions executed by each process (from the
PAPI_TOT_INS=INSTRUCTIONS_RETIRED hardware
counter)12 showed little variation between the processes that
took longer and the others, suggesting that each process did
very similar amounts of work.

Comparison of the number of cycles executed by each pro-
cess (PAPI_TOT_CYC=CPU_CLK_THREAD_UNHALTED)
to the number of reference cycles executed
(PAPI_REF_CYC=UNHALTED_REFERENCE_CYCLES)
showed that they correlated perfectly, indicating that
(dynamic) variation in clock frequency — due to turbo-boost,
throttling due to thermal constraints, and/or the use of
AVX512 vector instructions — did not occur. This was to
be expected since AVX512 vector instructions were not
used13, and the compute nodes were specifically configured
for reproducible performance with turbo-boost and energy-

12not counting those when within MPI routines, which are not useful
computation

13this is planned as future optimisation work, following the current perfor-
mance assessment

conserving optimisation14 disabled, but naturally needed to
be verified.

Computation can also be disrupted by system noise and jitter
from daemon processes running on compute nodes, however,
this could impact different compute nodes in every execution.
This was eliminated as being unlikely, since the processes
which were slow in any execution were verified to be slow
throughout the Simulate phase. Figure 6 shows the HemeLB
execution trace collected by Scalasca/Score-P in a timeline
visualisation by Vampir15 showing the same process(es) taking
longer for each and every timestep, as necessary for them
to have essentially no MPI waiting time. And when those
processes perform as expected in a consecutive execution
within the same job, there is nothing to indicate that the
processor (or indeed individual core) is deficient.

H. Core performance

So far it had been verified that the computation and
communication were completely deterministic, yet the time
required for them varied somewhat from run to run due to
very pronounced variations between processes which change
in each run. A few processes require considerably longer
for the same amount of computation, such that they had no
need to wait for communication with the others which had
correspondingly large amounts of waiting time.

To investigate deeper into the processor (core) execution
behaviour, further measurements were done incorporating
additional hardware counters in a top-down fashion as
recommended by Intel [13]. It was immediately clear that
slow processes correlated with larger numbers of resource
stall cycles (PAPI_RES_STL=RESOURCE_STALLS:ANY),
which cover both front-end and back-end pipelines,

14Energy Aware Runtime (EAR) on SuperMUC-NG
15https://vampir.eu/



Fig. 6. Vampir execution timeline of 13,824 HemeLB MPI processes (on 288 compute nodes) showing all processes and zoomed to show individual processes
in 5,000 time-steps of RunSimulation phase (duration 1,500 seconds), with MPI process rank 7782 clearly distinguished by its lack of time in MPI_Waitall
[red] although it does sends and receives with its neighbours just like the others. Equally spaced collective communication evident every 200 steps.



which was followed by back-end stall cycles
(CYCLE_ACTIVITY:STALLS_TOTAL), and ultimately
most strongly correlated with stall cycles waiting for memory
(CYCLE_ACTIVITY:STALLS_MEM_ANY). Notably,
counters for the various levels of cache (L1D/L2/L3), DRAM
and NUMA accesses were all very low and not strongly
correlated with the slow processes.

I. Comparison with other HPC computer systems

Lacking further ideas for progress on SuperMUC-NG, it
was decided to see whether other similar computer systems
would be able to reproduce this variability issue. The JUWELS
regular cluster nodes have almost identical dual 24-core Intel
Xeon Platinum 8168 ‘Skylake’ processors, but a Connect-
X4 EDR Infiniband interconnect from Mellanox (opposed to
Intel OmniPath), and are running a CentOS 7 Linux kernel.
JUWELS accelerated cluster nodes only differ in that they
have dual 20-core Intel Xeon Gold 6148 ‘Skylake’ processors
plus four Nvidia V100 ‘Volta’ GPUs. 240 large-memory com-
pute nodes have 192 GiB, with the others having only 96 GiB
(as on SuperMUC-NG). Although the same Intel compiler and
MPI were available, HemeLB executions failed to run fully to
completion due to a bug handling MPI windows, therefore
ParaStationMPI was used instead.16

While the HemeLB communication on JUWELS stan-
dard nodes was somewhat slower than on SuperMUC-NG,
it showed the very same characteristic pattern with one or
a few processes having very low MPI waiting time, yet
varying from run to run. Similarly, the computation itself was
generally slightly faster than on SuperMUC-NG but taking
notably longer for those processes with little waiting time
and correlating with the corresponding hardware counters,
particularly that for stall cycles waiting for memory.

On the JUWELS accelerated nodes, running 20 MPI pro-
cesses per socket (instead of 24)17, and on the DEEP-EST
prototype Data Analytics Module (DAM) with dual 24-core
Intel Xeon Platinum 8260M ‘CascadeLake’ processors and
Extoll Tourmalet interconnect, the same pattern of perfor-
mance variation between cores was also observed.

III. DISCUSSION

A. Origin of performance variability

Discussion with the system administrators at this point
brought to light the fact that significant run-to-run performance
variability had been recently reported with the xPic particle-
in-cell application [14] on JURECA-Booster (Intel Xeon Phi
‘Knights Landing (KNL)’) which seemed to match symptoms
that had been reported when benchmarking HPL [15]. TACC
Stampede2 comprises both Intel Xeon ‘Skylake’ and Intel
Xeon Phi ‘KNL’ processors which both showed significant
HPL and DGEMM performance variations from run to run,
that are due to elevated snoop filter conflicts arising from the
mapping of physical memory pages into the L3 cache based

16configured to avoid excessive memory requirements for MPI message
buffers: PSP_UCP=1, UCX_TLS=sm,self,ud

17therefore still one process per physical core, and not using the GPGPUs

on a proprietary hashing mechanism, as also documented by
Intel [17]. The off-core memory controller hardware counters
which can be used to confirm this are priviledged and therefore
not accessible to user codes, as well as not being directly
related to cores or application processes.

Further investigation and analysis [16] also determined that,
while the 24-core Skylake and 68-core KNL are apparently
the most seriously impacted, Intel Xeon Scalable processors
with non-power-of-two cores are all apparently affected to
varying extents by this issue. Huge memory pages18 of 1 GiB,
which are Intel’s workaround to optimise HPL performance,
were determined to be effective, however, these are not yet
available on Stampede2, SuperMUC-NG, JUWELS, or other
production systems with similar processors. On HPC clusters
where other proposed workarounds such as disabled hardware
threading or sub-NUMA clustering (SNC)19 is configured,
identical performance variability was encountered.

B. Impact on HPC applications

While the occurrence of this issue can be considered to
be rare, with only one in every ten or one hundred thousand
cores being affected with a slowdown of more than 10%,
the impact on large-scale parallel applications is very signifi-
cant. Since these are characterised by occassional (and often
more frequent) synchronisations, whether via global collective
operations or indirectly via interactions with neighbours, all
processes will be held back waiting on the slowest. The end
result is that an additional 10% or more of the entire computing
time is required for busy waiting, with corresponding impact
on energy consumption and system throughput. Performance
profiles of executions of the SPECFEM3D seismic wave
propagation simulation application20 taken on the Skylake
compute nodes of the Irène Joliot-Curie supercomputer also
show the same behaviour and impact on performance at large
scale, therefore the issue is likely to be widespread but perhaps
only identified when explicitly looked for.

A wide variety of commercial/vendor and open-source per-
formance tools are available which could be used to identify
such situations: the applicability and capabilities of many are
summarised in [18]. The tools used and demonstrated in this
paper were found to be particularly convenient, supporting
(very) large-scale measurements and analyses, however, the
performance variability and variation by process/core were
also verified using Intel Parallel Studio XE21 (notably Appli-
cation Performance Snapshot and Amplifier/VTune), although
limited to only modest scale.

System-level job-reporting and monitoring tools operate on
leadership HPC systems, including PerSyst [19] at LRZ and
LLview [20] at JSC, however, these currently don’t capture
and present the RAS data required to identify the perfor-
mance issues encountered in this work. Since the performance
issues are related to application-specific access patterns to

18https://github.com/libhugetlbfs/libhugetlbfs
19https://patents.google.com/patent/US8862828B2/en
20https://geodynamics.org/cig/software/specfem3d
21https://software.intel.com/en-us/parallel-studio-xe



TABLE II
COMPUTER SYSTEMS AND CODES TESTED

Computer system Site CPU Processor Cores HTT SNC GHP Uncore xPic Other codes
SuperMUC-NG LRZ SKX Platinum 8174 ‘Skylake’ 2x24 2 - - - 7.6% HemeLB
JUWELS-Cluster JSC SKX Platinum 8168 ‘Skylake’ 2x24 2 - - - 6.5% HemeLB
Irène Joliot-Curie TGCC SKX Platinum 8168 ‘Skylake’ 2x24 2 - - - SPECFEM3D
MareNostrum-IV BSC SKX Platinum 8160 ‘Skylake’ 2x24 - - - - 8.2%
CLAIX-2018 RWTH SKX Platinum 8160 ‘Skylake’ 2x24 2 2 - - 7.3%
Barbora (cpu) IT4I CLX Gold 6240 ‘Cascade Lake’ 2x18 2 - - - 6.0%
JUWELS-GPU (V100) JSC SKX Gold 6148 ‘Skylake’ 2x20 2 - - - 6.1%
Barbora (gpu) IT4I SKX Gold 6126 ‘Skylake’ 2x12 2 - - - 6.5%
JURECA-Cluster JSC HSW E5-2680 v3 ‘Haswell’ 2x12 2 - - - 0.9%

Cores = sockets-per-node×cores-per-socket
HTT = Hyper-Threading Technnology enabled: Intel proprietary simultaneous multithreading (SMT) implementation
SNC = Sub-NUMA Clustering enabled (number of NUMA domains per socket)
GHP = Gigabyte Huge Pages enabled providing backing for application address space
Uncore = (priviledged) access available to Intel system agent non-core hardware counters such as memory controller and snoop agent
xPic = worst observed slowdown relative to best (minimum) execution on the same processor
Other codes = multi-node MPI applications that manifest similar non-deterministic slowdown (5%+) for individual processes/cores

large amounts of memory, for processes/threads executing on
individual processor sockets/cores and only during particular
execution phases, this will require more fine-grained data
collection and analysis.

C. Application malleability and reactivity

Avoidance of suspect processors when submitting jobs can-
not be done when the affected processors/cores are not deter-
minable in advance, necessitating dynamic load re-balancing
after an application has already started execution. Fortunately,
once affected processes been identified and have all had their
effective load re-balanced (which might require more than
one iteration), it is expected that efficient execution will be
unimpeded thereafter (unless additional or different memory
is subsequently accessed).

Chameleon [21] and DLB [22] are examples of libraries
being developed for reactive load balancing. Both rely on
applications incorporating hybrid task parallelism via OpenMP
to allow dynamic migration of work (tasks) between threads
in SMP compute nodes after self-introspection and analysis,
which can be more efficient than standard OpenMP dynamic
loop scheduling but similarly damages data locality when work
is migrated. For persistent load imbalances, as encountered in
this study, a customised lightweight migration strategy needs
to be developed.

IV. CONCLUSION

Performance analysis of (prospective) exascale applications
has long been recognised to present significant challenges,
particularly with extreme scale and ever increasing complexity.

Inherent performance variability has always been an issue
for HPC parallel applications, from network contention, shared
filesystems, intrusive system daemons, energy policies, etc.,
for which corresponding amelioration strategoes are well doc-
umented in best practices. However, application-specific mem-
ory and processor core performance variablity exacerbates
this, and now (large-scale) executions have neither predictable,
repeatable nor reproducible performance, even for immediately

following runs on the exact same hardware! The task for
performance analysts is thereby made much more difficult.

For robust exa-scalability, applications are likely to need to
dynamically adapt to both hardware failures and performance
degradations that would otherwise cripple executions. Perfor-
mance tools will therefore also need to become more dynamic
in not only measuring parallel executions, but also providing
analyses of execution inefficiencies directly to applications on
the fly so that they can be addressed promptly.

ACKNOWLEDGMENTS

This work was done under the auspices of the European
Union’s Horizon 2020 research and innovation programme
HPC Centres of Excellence for Performance Optimisation and
Productivity (POP, 824080) and Computational Biomedicine
(CompBioMed, 675451) [23].

The Partnership for Advanced Computing in Europe
(PRACE) and Gauß Centre for Supercomputing e.V.
(www.gauss-centre.eu) are gratefully acknowledged for
providing computing time on the GCS supercomputers
SuperMUC-NG at Leibniz-Rechenzentrum and JUWELS at
Jülich Supercomputing Centre. Additional allocations for test-
ing were also provided by JSC on DEEP-EST DAM, JURECA
& JUSUF, and by POP partners Barcelona Supercomput-
ing Center on MareNostrum-IV, IT4Innovations on Barbora,
RWTH Aachen University on CLAIX-2018, and Très Grand
Centre de calcul du CEA (TGCC) on Irène Joliot-Curie.

Alex Patronis and Jacopo de Amicis guided configuration
and building of the HemeLB and xPic codes and running their
testcases, support for Intel, Scalasca (including Score-P and
CUBE) and Vampir tools came from their developers, while
Damian Alvarez, Reinhold Bader and their colleagues gave
technical support and key advice.

Particular thanks are also due Dirk Brömmel, Peter
Coveney, Stephane Eranian, Wolfgang Frings, René Halver,
Jesús Labarta, John McCalpin, Larry Meadows, Heidi Poxon,
Godehard Sutmann, Josef Weidendorfer and the anonymous
referees for their insightful feedback on earlier versions of this
work which greatly improved the analysis and its presentation.



REFERENCES

[1] J. Dongarra, “Report on the Fujitsu Fugaku system,” University of
Tennessee-Knoxville Innovative Computing Laboratory, Tech. Rep. ICL-
UT-20-06, June 2020.
[Online]. Available: https://www.icl.utk.edu/files/publications/2020/
icl-utk-1379-2020.pdf

[2] D. Brömmel, W. Frings, B. J. N. Wylie, B. Mohr, P. Gibbon, and T. Lip-
pert, “The High-Q Club: Experience with extreme-scaling application
codes,” Supercomputing Frontiers and Innovations 5(1), 59-78 (2018).
[Online]. Available: http://doi.org/10.14529/jsfi180104

[3] T. J. Deakin, S. N. McIntosh-Smith, J. Price, A. Poenaru, P. R. Atkinson,
C. Popa, and J. Salmon, “Performance portability across diverse com-
puter architectures,” in Proc. P3HPC Int’l Workshop on Performance,
Portability and Productivity in HPC (Denver, Colorado, USA), ACM,
Nov. 2019.
[Online]. Available: https://doi.org/10.1109/P3HPC49587.2019.00006

[4] F. Petrini, D. J. Kerbyson, and S. Pakin, “The case of the missing
supercomputer performance: Achieving optimal performance on the
8,192 processors of ASCI Q,” in Proc. SC03 Int’l Conf. for High
Performance Computing, Networking, Storage, and Analysis (Phoenix,
Arizona, USA), ACM, Nov. 2003.
[Online]. Available: https://doi.org/10.1145/1048935.1050204

[5] T. Patki, J. J. Thiagarajan, A. Ayala, and T. Z. Islam, “Performance
optimality or reproducibility: that is the question,” in Proc. SC19
Int’l Conf. for High Performance Computing, Networking, Storage, and
Analysis (Denver, Colorado, USA), ACM, Nov. 2019.
[Online]. Available: https://doi.org/10.1145/3295500.3356217

[6] J. W. S. McCullough, R. A. Richardson, A. Patronis, R. Halver, R. Mar-
shall, M. Ruefenacht, B. J. N. Wylie, T. Odaker, M. Wiedmann,
B. Lloyd, E. Neufeld, G. Sutmann, A. Skjellum, D. Kranzlmüller, and
P. V. Coveney, “Towards blood flow in the Virtual Human: Efficient self-
coupling of HemeLB,” J. Royal Society Interface Focus, to appear.
[Online]. Available: https://arxiv.org/abs/2010.04144

[7] A. Patronis, R. A. Richardson, S. Schmieschek, B. J. N. Wylie,
R. W. Nash, and P. V. Coveney, “Modeling patient-specific magnetic drug
targeting within the intracranial vasculature,” Frontiers in Physiology
9:331, Apr. 2018.
[Online]. Available: https://doi.org/10.3389/fphys.2018.00331

[8] Intel Corp., “Intel Xeon Platinum 8174 Processor (33M cache,
3.10 GHz) product specifications,”
[Online]. Available: https://ark.intel.com/content/www/us/en/ark/products/
136874/intel-xeon-platinum-8174-processor-33m-cache-3-10-ghz.html

[9] A. C. Figueroa, “.stl file of Circle of Willis Benchmark geometric model
for hemodynamic simulation,” University of Michigan – Deep Blue data
repository, Oct. 2020.
[Dataset]. Available: https://doi.org/10.7302/xx1r-zg70

[10] Performance Optimisation and Productivity Centre of Excellence in
HPC, “POP Standard Metrics for Parallel Performance Analysis,” 2016.
[Online]. Available: https://pop-coe.eu/node/69

[11] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, and
B. Mohr, “The Scalasca performance toolset architecture,” Concurrency
and Computation: Practice and Experience, 22(6):702-719, Apr. 2010.
[Online]. Available: https://doi.org/10.1002/cpe.1556

[12] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes the
neighborhood: performance degradation due to nearby jobs,” in Proc.
SC13 Int’l Conf. for High Performance Computing, Networking, Storage,
and Analysis (Denver, Colorado, USA), IEEE, Nov. 2013.
[Online]. Available: https://doi.org/10.1145/2503210.2503247

[13] A. Yasin, “A top-down method for performance analysis and counters
architecture,” in Proc. ISPASS Int’l Symp. on Performance Analysis of
Systems and Software (Monterey, California, USA), IEEE, Mar. 2014.
[Online]. Available: https://doi.org/10.1109/ISPASS.2014.6844459

[14] A. Kreuzer, N. Eicker, J. Amaya, and E. Suarez, “Application perfor-
mance on a cluster-booster system,” in Proc. Int’l Parallel and Dis-
tributed Processing Symp. Workshops (IPDPSW, Vancouver, Canada),
pp. 69-78, IEEE, May 2018.
[Online]. Available: http://dx.doi.org/10.1109/IPDPSW.2018.00019

[15] J. D. McCalpin, “HPL and DGEMM performance variability on the
Xeon Platinum 8160 processor,” in Proc. SC18 Int’l Conf. for High
Performance Computing, Networking, Storage, and Analysis (Dallas,
Texas, USA), IEEE, Nov. 2018.
[Online]. Available: https://doi.org/10.1109/SC.2018.00021

[16] J. D. McCalpin, “(HPL and DGEMM) performance variability due
to snoop filter conflicts on the Xeon Gold and Platinum processors
with 18, 20, 22, 24, 26, and 28 cores — and Xeon Phi x200 (KNL),”
annotated slides from [15] presentation.
[Online]. Available: https://sites.utexas.edu/jdm4372/2019/01/07/sc18-
paper-hpl-and-dgemm-performance-variability-on-intel-xeon-platinum-
8160-processors

[17] Intel Corp., “Run-to-run performance variability on 24-core Intel
Xeon Scalable processor,” white paper, number 576612, revision 0.3,
Feb. 2018.

[18] Virtual Institute – High Productivity Supercomputing, “VI-HPS Tools
Guide,” Nov. 2019.
[Online]. Available: http://www.vi-hps.org/tools/cms/upload/material/
general/ToolsGuide.pdf

[19] C. Guillen, W. Hesse, and M. Brehm, “The PerSyst monitoring tool:
A transport system for performance data using quantiles,” in Euro-Par
2014: Parallel Processing Workshops (Porto, Portugal), Lecture Notes
in Computer Science, vol 8806, pp. 363-374, Springer, Aug. 2014.
[Online]. Available: https://doi.org/10.1007/978-3-319-14313-2 31

[20] S. Lührs and W. Frings, “LLview-based job-reporting: Non-intrusive
job performance-monitoring,” in Performance Engineering Workshop
(Dresden, Germany), Mar. 2019.
[Online]. Available: http://hdl.handle.net/2128/22727

[21] J. Klinkenberg, P. Sanfass, M. Bader, C. Terboven, and M. S. Müller,
“CHAMELEON: Reactive load balancing for hybrid MPI+OpenMP
task-parallel applications,” J. Parallel Distrib. Computing 138, pp. 55-
64, Apr. 2020.
[Online]. Available: https://doi.org/10.1016/j.jpdc.2019.12.005

[22] M. Garcia, J. Labarta, and J. Corbalan, “Hints to improve automatic
load balancing with LeWI for hybrid applications,” J. Parallel Distrib.
Computing 74(9), pp. 2781-2794, Sep. 2014.
[Online]. Available: https://doi.org/10.1016/j.jpdc.2014.05.004

[23] B. J. N. Wylie, “HemeLB on SuperMUC-NG performance assessment
report,” POP2 AR 041, Feb. 2020.
[Online]. Available: https://doi.org/10.5281/zenodo.4105742

APPENDIX

A. Artefact Description

The HemeLB application was run with a 6.4µs resolution
circle of Willis geometry dataset on LRZ’s SuperMUC-NG
supercomputer, and its execution performance and scalability
to over 300,000 MPI processes measured and analysed via run-
time summaries and execution event traces from the system’s
6,480 dual 24-core compute nodes.

a) Software Artefact Availability: Some author-created
software artefacts are NOT maintained in a public repository.

b) Hardware Artefact Availability: There are no author-
created hardware artefacts.

c) Data Artefact Availability: Some author-created data
artefacts are NOT maintained in a public repository.

d) Proprietary Artefacts: No author-created artefacts are
proprietary. There are associated proprietary artefacts that are
not created by the author.

e) DOIs where artefacts are available:

• 10.5281/zenodo.4105742: HemeLB on SuperMUC-NG
performance assessment report (POP2 AR 041)

• 10.5281/zenodo.4104374: Scalasca summary analysis
of HemeLB application execution on SuperMUC-NG
(300000 MPI processes)

• 10.5281/zenodo.4104345: Scalasca trace analysis of
HemeLB application execution on SuperMUC-NG
(13824 MPI processes)



B. Baseline experimental setup

a) Relevant hardware details: Lenovo ThinkSystem
SD650 supercomputer SuperMUC-NG at Leibniz-
Rechenzentrum (LRZ, Germany) comprising 6,480 compute
nodes with dual 24-core Intel Xeon Platinum 8174 @
3.10 GHz (‘Skylake’) processors, each node with a minimum
of 96 GiB memory. (144 compute nodes with 768 GiB.)

Intel OmniPath network, with a fat-tree topology within
islands and 1:4 pruned connection between islands. 50 TB IBM
Spectrum Scale (GPFS) parallel filesystem.

b) Operating system:
• SUSE Linux Enterprise Server (SLES) 12 SP3

c) Compiler:
• Intel Studio C++ compiler 19.0.4.243

d) Libraries:
• Boost 1.61.0
• Intel Studio MPI 19.0.4.243
• OTF2 2.1.1
• PAPI 5.6.0
• SIONlib 1.7.2 [http://www.fz-juelich.de/jsc/sionlib]

e) Tools:
• Cmake 3.12.1
• Scalasca 2.5 [10.5281/zenodo.4103923]
• Score-P 5.0 [10.5281/zenodo.2605026]
• CubeGUI 4.5 [10.5281/zenodo.3885304]
• Vampir/VampirServer 9.6.1 [https://www.vampir.eu]

f) Application:
• HemeLB (including development versions) configured to

use two reader ranks and MPI-3 shared memory model
when distributing geometry data during initialisation
[https://github.com/UCL-CCS/HemePure]
g) Input dataset:

• input.xml specifying 5000 lattice simulation steps of
0.1µs with writing of intermediate and final state disabled

• coW-6.4um.gmy “circle of Willis” lattice geometry at
6.4 micron resolution [10.7302/xx1r-zg70]

C. Modifications made for the paper

a) Score-P configuration: A custom installation specify-
ing MPI_CPPFLAGS=-DSCOREP_MPI_NO_MINI, to avoid
generating wrappers for MPI_Comm_rank/size (required
for trace collection/analysis), was configured with the PAPI
library and for Intel MPI and compilers.

b) Instrumentation: The HemeLB application depen-
dencies were built without modification. Source code
of the HemeLB application src/main.cc was an-
notated with Score-P measurement control API macros
(SCOREP_RECORDING_OFF/ON) to pause event record-
ing during the initialisation phase, and configured using
CXX=scorep-icpc with environment settings to direct the
Score-P instrumenter

SCOREP_WRAPPER_INSTRUMENTER_FLAGS=
"--user --mpp=mpi --thread=none --nomemory"

SCOREP_WRAPPER_COMPILER_FLAGS=
"-tcollect-filter=<path_to_file>"

with the latter filter file for the Intel compiler containing the
signatures of routines to be instrumented or not:

.* OFF
main ON
BasicDecomposition::RotateAndAllocate ON
BasicDecomposition::BasicDecomposition ON
BasicDecomposition::DecomposeBlock ON
GeometryReader::LoadAndDecompose ON
GeometryReader::OptimiseDomainDecomposition ON
GeometryReader::ReadOnAllTasks ON
GeometryReader::ReadHeader ON
GeometryReader::ReadInBlocksWithHalo ON
GeometryReader::RereadBlocks ON
SimulationMaster.cc ON
_sti__* OFF
’non-virtual thunk to’ OFF
’virtual thunk to’ OFF
hemelb::geometry::LatticeData::Get*Count OFF
SimulationMaster::GetProcessorCount OFF
SimulationMaster::IsCurrentProcTheIOProc OFF
SimulationMaster::LogStabilityReport OFF
SimulationMaster::OutputPeriod OFF
SimulationMaster::RecalculatePropertyReq*s OFF

c) Measurement: Job execution via SLURM scripts
specified --ear=off to have access to hardware
counters in measurements and set the processor
‘performance’ profile disabling dynamic frequency changes.
--ntasks-per-node=48 and --cpus-per-task=1
allocated one MPI process to each physical core for the
specified number of compute nodes. --cpu-bind=cores
and --mem-bind=local bound each process to a dedicated
core and local (socket) memory.

Exclusion clauses were also added to get alloca-
tions avoiding various compute nodes as necessary, e.g.,
--exclude=i02r08c05s07,i04r01c05s10.

Runtime environment variables for Score-P measurement:

SCOREP_DEVELOPMENT_MEMORY_STATS=aggregated
SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_TOT_CYC,

PAPI_REF_CYC,PAPI_RES_STL
SCOREP_TIMER=gettimeofday
SCOREP_TRACING_USE_SION=true
SCOREP_TRACING_MAX_PROCS_PER_SION_FILE=576

SCOREP_TOTAL_MEMORY was also set as required based
on the Score-P memory usage statistics reported, e.g., to
200MB for the runtime summary execution configurations
with 300,000 and more processes. Simulation execution di-
lation (compared to uninstrumented reference execution) was
less than 4%.

d) Analysis: For Scalasca automated trace analysis,
event timestamp consistency correction was applied via
SCAN_ANALYZE_OPTS="--time-correct".

Analysis report exploration with CUBE GUI and execution
trace exploration with Vampir was done on local clusters and
a notebook computer.

Extraction of metric values for specific call-paths from
analysis reports for additional graphs:

cube_dump -z incl -m comp
-c name=/SimulationMaster::DoTimeStep/ ...

cube_dump -z incl -m bytes_sent_p2p -c 64 ...


