001     885796
005     20210401192807.0
024 7 _ |a 10.1103/PhysRevResearch.2.043100
|2 doi
024 7 _ |a 2128/25952
|2 Handle
024 7 _ |a altmetric:92710141
|2 altmetric
024 7 _ |a WOS:000605396900008
|2 WOS
037 _ _ |a FZJ-2020-04093
082 _ _ |a 530
100 1 _ |a Zhu, Fengfeng
|0 P:(DE-Juel1)174027
|b 0
|e Corresponding author
245 _ _ |a Magnetic structures, spin-flop transition, and coupling of Eu and Mn magnetism in the Dirac semimetal EuMnBi$_2$
260 _ _ |a College Park, MD
|c 2020
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1617217571_32719
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In recently emerging correlated topological materials, such as magnetic Dirac/Weyl semimetals, additional tunabilities of their transport and magnetic properties may be achieved by utilizing possible interaction between the exotic relativistic fermions and magnetic degree of freedom. The two-dimensional antiferromagnetic (AFM) Dirac semimetal EuMnBi2, in which an intricate interplay between multiple magnetic sublattices and Dirac fermions was suggested, provides an ideal platform to test this scenario. We report here a comprehensive study of the AFM structures of the Eu and Mn magnetic sublattices as well as the interplay between Eu and Mn magnetism in this compound by using both polarized and nonpolarized single-crystal neutron diffraction. Magnetic susceptibility, specific heat capacity measurements, and the temperature dependence of magnetic diffractions suggest that the AFM ordering temperatures of the Eu and Mn moments are at 22 and 337 K, respectively. The magnetic moments of both Eu and Mn ions are oriented along the crystallographic c axis, and the respective magnetic propagation vectors are kEu=(0,0,1) and kMn=(0,0,0). With proper neutron absorption correction, the ordered moments are refined at 3 K as 7.7(1) and 4.1(1) μB for the Eu and Mn ions, respectively. In addition, a spin-flop (SF) phase transition of the Eu moments in an applied magnetic field along the c axis was confirmed to take place at a critical field of Hc≈ 5.3 T. The AFM exchange interaction and magnetic anisotropy parameters (J=0.81 meV, Ku=0.18 meV, Ke=−0.11 meV) are determined based on a subsequent quantitative analysis of the SF transition. The evolution of the Eu magnetic moment direction as a function of the applied magnetic field in the SF phase was also determined. Clear kinks in both field and temperature dependences of the magnetic reflections (±1, 0, 1) of Mn were observed at the onset of the SF phase transition and the AFM order of the Eu moments, respectively. This unambiguously indicates the existence of a strong coupling between Eu and Mn magnetism. The interplay between two magnetic sublattices could bring new possibilities to tune Dirac fermions via changing magnetic structures by applied fields in this class of magnetic topological semimetals.
536 _ _ |a 6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)
|0 G:(DE-HGF)POF3-6212
|c POF3-621
|f POF III
|x 0
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 1
536 _ _ |a 6G15 - FRM II / MLZ (POF3-6G15)
|0 G:(DE-HGF)POF3-6G15
|c POF3-6G15
|f POF III
|x 2
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 3
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 0
650 1 7 |a Information and Communication
|0 V:(DE-MLZ)GC-120-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e DNS: Diffuse scattering neutron time of flight spectrometer
|f NL6S
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)DNS-20140101
|5 EXP:(DE-MLZ)DNS-20140101
|6 EXP:(DE-MLZ)NL6S-20140101
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e HEiDi: Single crystal diffractometer on hot source
|f SR9b
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)HEIDI-20140101
|5 EXP:(DE-MLZ)HEIDI-20140101
|6 EXP:(DE-MLZ)SR9b-20140101
|x 1
700 1 _ |a Wang, Xiao
|0 P:(DE-Juel1)171236
|b 1
700 1 _ |a Meven, Martin
|0 P:(DE-Juel1)164297
|b 2
|u fzj
700 1 _ |a Song, Junda
|0 P:(DE-Juel1)173891
|b 3
|u fzj
700 1 _ |a Mueller, Thomas
|0 P:(DE-Juel1)156453
|b 4
|u fzj
700 1 _ |a Yi, Changjiang
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ji, Wenhai
|0 P:(DE-Juel1)167574
|b 6
700 1 _ |a Shi, Youguo
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Ma, Jie
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Schmalzl, Karin
|0 P:(DE-Juel1)130943
|b 9
700 1 _ |a Schmidt, Wolfgang
|0 P:(DE-Juel1)130944
|b 10
700 1 _ |a Su, Yixi
|0 P:(DE-Juel1)130991
|b 11
|e Corresponding author
700 1 _ |a Brückel, Thomas
|0 P:(DE-Juel1)130572
|b 12
|u fzj
773 _ _ |a 10.1103/PhysRevResearch.2.043100
|g Vol. 2, no. 4, p. 043100
|0 PERI:(DE-600)3004165-X
|n 4
|p 043100
|t Physical review research
|v 2
|y 2020
|x 2643-1564
856 4 _ |u https://juser.fz-juelich.de/record/885796/files/PhysRevResearch.2.043100.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/885796/files/PhysRevResearch.2.043100.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:885796
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174027
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171236
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)164297
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)173891
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132204
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)167574
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130943
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130944
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)130991
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)130572
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6212
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Controlling Collective States
|x 1
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|x 2
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 3
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-588b)4597118-3
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21