000885797 001__ 885797
000885797 005__ 20210130010520.0
000885797 0247_ $$2doi$$a10.1021/acsmedchemlett.0c00381
000885797 0247_ $$2Handle$$a2128/26511
000885797 0247_ $$2altmetric$$aaltmetric:92427450
000885797 0247_ $$2pmid$$a33329763
000885797 0247_ $$2WOS$$aWOS:000599586900006
000885797 037__ $$aFZJ-2020-04094
000885797 082__ $$a610
000885797 1001_ $$0P:(DE-HGF)0$$aDorst, Andrea$$b0
000885797 245__ $$aSemisynthetic Analogs of the Antibiotic Fidaxomicin—Design, Synthesis, and Biological Evaluation
000885797 260__ $$aWashington, DC$$bACS$$c2020
000885797 3367_ $$2DRIVER$$aarticle
000885797 3367_ $$2DataCite$$aOutput Types/Journal article
000885797 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607700576_19866
000885797 3367_ $$2BibTeX$$aARTICLE
000885797 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885797 3367_ $$00$$2EndNote$$aJournal Article
000885797 520__ $$aThe glycoslated macrocyclic antibiotic fidaxomicin (1, tiacumicin B, lipiarmycin A3) displays good to excellent activity against Gram-positive bacteria and was approved for the treatment of Clostridium difficile infections (CDI). Among the main limitations for this compound, its low water solubility impacts further clinical uses. We report on the synthesis of new fidaxomicin derivatives based on structural design and utilizing an operationally simple one-step protecting group-free preparative approach from the natural product. An increase in solubility of up to 25-fold with largely retained activity was observed. Furthermore, hybrid antibiotics were prepared that show improved antibiotic activities.
000885797 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000885797 536__ $$0G:(DE-Juel1)hkf7_20200501$$aForschergruppe Gohlke (hkf7_20200501)$$chkf7_20200501$$fForschergruppe Gohlke$$x1
000885797 588__ $$aDataset connected to CrossRef
000885797 7001_ $$0P:(DE-HGF)0$$aBerg, Regina$$b1
000885797 7001_ $$0P:(DE-Juel1)174133$$aGertzen, Christoph G. W.$$b2
000885797 7001_ $$0P:(DE-HGF)0$$aSchäfle, Daniel$$b3
000885797 7001_ $$0P:(DE-HGF)0$$aZerbe, Katja$$b4
000885797 7001_ $$0P:(DE-HGF)0$$aGwerder, Myriam$$b5
000885797 7001_ $$0P:(DE-HGF)0$$aSchnell, Simon D.$$b6
000885797 7001_ $$0P:(DE-HGF)0$$aSander, Peter$$b7
000885797 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b8
000885797 7001_ $$00000-0003-3053-0689$$aGademann, Karl$$b9$$eCorresponding author
000885797 773__ $$0PERI:(DE-600)2532386-6$$a10.1021/acsmedchemlett.0c00381$$gp. acsmedchemlett.0c00381$$n12$$p2414–2420$$tACS medicinal chemistry letters$$v11$$x1948-5875$$y2020
000885797 8564_ $$uhttps://juser.fz-juelich.de/record/885797/files/ACS_ML_revised.pdf$$yOpenAccess
000885797 8564_ $$uhttps://juser.fz-juelich.de/record/885797/files/acsmedchemlett.0c00381.pdf$$yOpenAccess
000885797 8564_ $$uhttps://juser.fz-juelich.de/record/885797/files/ACS_ML_revised.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885797 909CO $$ooai:juser.fz-juelich.de:885797$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174133$$aForschungszentrum Jülich$$b2$$kFZJ
000885797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b8$$kFZJ
000885797 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000885797 9141_ $$y2020
000885797 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-03
000885797 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-03
000885797 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-03
000885797 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-03
000885797 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000885797 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS MED CHEM LETT : 2018$$d2020-01-03
000885797 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-03
000885797 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-03
000885797 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-03
000885797 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885797 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2020-01-03
000885797 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-03
000885797 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-03
000885797 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-03
000885797 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-03
000885797 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-03
000885797 920__ $$lyes
000885797 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000885797 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000885797 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x2
000885797 980__ $$ajournal
000885797 980__ $$aVDB
000885797 980__ $$aUNRESTRICTED
000885797 980__ $$aI:(DE-Juel1)JSC-20090406
000885797 980__ $$aI:(DE-Juel1)NIC-20090406
000885797 980__ $$aI:(DE-Juel1)IBI-7-20200312
000885797 9801_ $$aFullTexts