000885798 001__ 885798
000885798 005__ 20230815122842.0
000885798 0247_ $$2doi$$a10.1016/j.jmb.2020.10.014
000885798 0247_ $$2ISSN$$a0022-2836
000885798 0247_ $$2ISSN$$a1089-8638
000885798 0247_ $$2Handle$$a2128/26321
000885798 0247_ $$2altmetric$$aaltmetric:92787781
000885798 0247_ $$2pmid$$apmid:33068636
000885798 0247_ $$2WOS$$aWOS:000597938800016
000885798 037__ $$aFZJ-2020-04095
000885798 082__ $$a610
000885798 1001_ $$0P:(DE-HGF)0$$aAyyappan Jaguva Vasudevan, Ananda$$b0
000885798 245__ $$aLoop 1 of APOBEC3C regulates its antiviral activity against HIV-1
000885798 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2020
000885798 3367_ $$2DRIVER$$aarticle
000885798 3367_ $$2DataCite$$aOutput Types/Journal article
000885798 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1606749216_8846
000885798 3367_ $$2BibTeX$$aARTICLE
000885798 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885798 3367_ $$00$$2EndNote$$aJournal Article
000885798 520__ $$aAPOBEC3 deaminases (A3s) provide mammals with an anti-retroviral barrier by catalyzing dC-to-dU deamination on viral ssDNA. Within primates, A3s have undergone a complex evolution via gene duplications, fusions, arms race and selection. Human APOBEC3C (hA3C) efficiently restricts the replication of viral infectivity factor (vif)-deficient Simian immunodeficiency virus (SIVΔvif), but for unknown reasons, it inhibits HIV-1Δvif only weakly. In catarrhines (Old World monkeys and apes), the A3C loop 1 displays the conserved amino acid pair WE, while the corresponding consensus sequence in A3F and A3D is the largely divergent pair RK, which is also the inferred ancestral sequence for the last common ancestor of A3C and of the C-terminal domains of A3D and A3F in primates. Here, we report that modifying the WE residues in hA3C loop 1 to RK leads to stronger interactions with substrate ssDNA, facilitating catalytic function, which results in a drastic increase in both deamination activity and in the ability to restrict HIV-1 and LINE-1 replication. Conversely, the modification hA3F_WE resulted only in a marginal decrease in HIV-1Δvif inhibition. We propose that the two series of ancestral gene duplications that generated A3C, A3D-CTD and A3F-CTD allowed neo/subfunctionalization: A3F-CTD maintained the ancestral RK residues in loop 1, while diversifying selection resulted in the RK→WE modification in Old World anthropoids’ A3C, possibly allowing for novel substrate specificity and function.
000885798 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000885798 536__ $$0G:(DE-Juel1)hkf7_20200501$$aForschergruppe Gohlke (hkf7_20200501)$$chkf7_20200501$$fForschergruppe Gohlke$$x1
000885798 536__ $$0G:(GEPRIS)417919780$$aDFG project 417919780 - Zentrum für strukturelle Studien $$c417919780$$x2
000885798 588__ $$aDataset connected to CrossRef
000885798 7001_ $$0P:(DE-HGF)0$$aBalakrishnan, Kannan$$b1
000885798 7001_ $$0P:(DE-Juel1)174133$$aGertzen, Christoph$$b2
000885798 7001_ $$0P:(DE-HGF)0$$aBorvető, Fanni$$b3
000885798 7001_ $$0P:(DE-HGF)0$$aZhang, Zeli$$b4
000885798 7001_ $$0P:(DE-HGF)0$$aSangwiman, Anucha$$b5
000885798 7001_ $$0P:(DE-HGF)0$$aHeld, Ulrike$$b6
000885798 7001_ $$0P:(DE-HGF)0$$aKüstermann, Caroline$$b7
000885798 7001_ $$0P:(DE-HGF)0$$aBanerjee, Sharmistha$$b8
000885798 7001_ $$0P:(DE-HGF)0$$aSchumann, Gerald G.$$b9
000885798 7001_ $$0P:(DE-HGF)0$$aHäussinger, Dieter$$b10
000885798 7001_ $$0P:(DE-HGF)0$$aBravo, Ignacio G.$$b11
000885798 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b12
000885798 7001_ $$0P:(DE-HGF)0$$aMünk, Carsten$$b13$$eCorresponding author
000885798 773__ $$0PERI:(DE-600)1355192-9$$a10.1016/j.jmb.2020.10.014$$gp. S0022283620305891$$n23$$p6200-6227$$tJournal of molecular biology$$v432$$x0022-2836$$y2020
000885798 8564_ $$uhttps://juser.fz-juelich.de/record/885798/files/Text-R1_CG_HG.pdf$$yPublished on 2020-10-15. Available in OpenAccess from 2021-10-15.
000885798 8564_ $$uhttps://juser.fz-juelich.de/record/885798/files/Text-R1_CG_HG.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-10-15. Available in OpenAccess from 2021-10-15.
000885798 909CO $$ooai:juser.fz-juelich.de:885798$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885798 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174133$$aForschungszentrum Jülich$$b2$$kFZJ
000885798 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b12$$kFZJ
000885798 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000885798 9141_ $$y2020
000885798 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2019-12-20
000885798 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2019-12-20
000885798 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2019-12-20
000885798 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2019-12-20
000885798 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2019-12-20
000885798 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000885798 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000885798 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MOL BIOL : 2018$$d2019-12-20
000885798 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2019-12-20
000885798 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2019-12-20
000885798 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2019-12-20
000885798 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2019-12-20
000885798 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MOL BIOL : 2018$$d2019-12-20
000885798 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2019-12-20
000885798 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2019-12-20
000885798 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2019-12-20
000885798 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2019-12-20$$wger
000885798 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2019-12-20
000885798 920__ $$lyes
000885798 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000885798 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000885798 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x2
000885798 980__ $$ajournal
000885798 980__ $$aVDB
000885798 980__ $$aUNRESTRICTED
000885798 980__ $$aI:(DE-Juel1)JSC-20090406
000885798 980__ $$aI:(DE-Juel1)NIC-20090406
000885798 980__ $$aI:(DE-Juel1)IBI-7-20200312
000885798 9801_ $$aFullTexts