000885810 001__ 885810
000885810 005__ 20220930130255.0
000885810 0247_ $$2doi$$a10.1039/D0CP02076A
000885810 0247_ $$2ISSN$$a1463-9076
000885810 0247_ $$2ISSN$$a1463-9084
000885810 0247_ $$2Handle$$a2128/26462
000885810 0247_ $$2pmid$$a33078790
000885810 0247_ $$2WOS$$aWOS:000597256600078
000885810 037__ $$aFZJ-2020-04101
000885810 041__ $$aEnglish
000885810 082__ $$a540
000885810 1001_ $$0P:(DE-Juel1)170029$$aShams, S. Fatemeh$$b0$$eCorresponding author
000885810 245__ $$aStructural perspective on revealing heat dissipation behavior of CoFe 2 O 4 –Pd nanohybrids: great promise for magnetic fluid hyperthermia
000885810 260__ $$aCambridge$$bRSC Publ.$$c2020
000885810 3367_ $$2DRIVER$$aarticle
000885810 3367_ $$2DataCite$$aOutput Types/Journal article
000885810 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607609013_18798
000885810 3367_ $$2BibTeX$$aARTICLE
000885810 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885810 3367_ $$00$$2EndNote$$aJournal Article
000885810 520__ $$aLoss mechanisms in fluid heating of cobalt ferrite (CFO) nanoparticles and CFO–Pd heterodimer colloidal suspensions are investigated as a function of particle size, fluid concentration and magnetic field amplitude. The specific absorption rate (SAR) is found to vary with increasing particle size due to a change in dominant heating mechanism from susceptibility to hysteresis and frictional loss. The maximum SAR is obtained for particle diameters of 11–15 nm as a result of synergistic contributions of susceptibility loss, including Néel and Brownian relaxation and especially hysteresis loss, thereby validating the applicability of linear response theory to superparamagnetic CFO nanoparticles. Our results show that the ferrofluid concentration and magnetic field amplitude alter interparticle interactions and associated heating efficiency. The SAR of the CFO nanoparticles could be maximized by adjusting the synthesis parameters. Despite the paramagnetic properties of individual palladium nanoparticles, CFO–Pd heterodimer suspensions were observed to have surprisingly improved magnetization as well as SAR values, when compared with CFO ferrofluids. This difference is attributed to interfacial interactions between the magnetic moments of paramagnetic Pd and superparamagnetic/ferrimagnetic CFO. SAR values measured from CFO–Pd heterodimer suspensions were found to be 47–52 W gFerrite−1, which is up to a factor of two higher than the SAR values of commercially available ferrofluids, demonstrating their potential as efficient heat mediators. Our results provide insight into the utilization of CFO–Pd heterodimer suspensions as potential nanoplatforms for diagnostic and therapeutic biomedical applications, e.g., in cancer hyperthermia, cryopreserved tissue warming, thermoablative therapy, drug delivery and bioimaging.
000885810 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000885810 536__ $$0G:(EU-Grant)823717$$aESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)$$c823717$$fH2020-INFRAIA-2018-1$$x1
000885810 588__ $$aDataset connected to CrossRef
000885810 7001_ $$00000-0001-8514-6831$$aGhazanfari, Mohammad Reza$$b1
000885810 7001_ $$0P:(DE-HGF)0$$aPettinger, Susanne$$b2
000885810 7001_ $$0P:(DE-Juel1)157886$$aTavabi, Amir H.$$b3
000885810 7001_ $$00000-0002-7271-7989$$aSiemensmeyer, Konrad$$b4
000885810 7001_ $$0P:(DE-Juel1)166560$$aSmekhova, Alevtina$$b5
000885810 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b6
000885810 7001_ $$00000-0001-7224-8919$$aWestmeyer, Gil G.$$b7
000885810 7001_ $$0P:(DE-Juel1)162347$$aSchmitz-Antoniak, Carolin$$b8
000885810 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D0CP02076A$$gp. 10.1039.D0CP02076A$$n46$$p26728-26741$$tPhysical chemistry, chemical physics$$v22$$x1463-9084$$y2020
000885810 8564_ $$uhttps://juser.fz-juelich.de/record/885810/files/Sales%20Invoice_INV_008074.pdf
000885810 8564_ $$uhttps://juser.fz-juelich.de/record/885810/files/d0cp02076a.pdf
000885810 8564_ $$uhttps://juser.fz-juelich.de/record/885810/files/Manuscript%20_%20PCCP.pdf$$yPublished on 2020-10-07. Available in OpenAccess from 2021-10-07.
000885810 8767_ $$8INV_008074$$92020-11-26$$d2020-12-14$$eCover$$jZahlung erfolgt$$zGBP 1000 / Belegnr. 1200160982
000885810 909CO $$ooai:juser.fz-juelich.de:885810$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000885810 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170029$$aForschungszentrum Jülich$$b0$$kFZJ
000885810 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157886$$aForschungszentrum Jülich$$b3$$kFZJ
000885810 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b6$$kFZJ
000885810 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162347$$aForschungszentrum Jülich$$b8$$kFZJ
000885810 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000885810 9141_ $$y2020
000885810 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-10
000885810 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-10
000885810 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000885810 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-10
000885810 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-10
000885810 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-10
000885810 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-10
000885810 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-10
000885810 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2020-01-10$$wger
000885810 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2018$$d2020-01-10
000885810 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-10
000885810 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-10$$wger
000885810 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-10
000885810 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-10$$wger
000885810 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-10
000885810 920__ $$lyes
000885810 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000885810 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x1
000885810 980__ $$ajournal
000885810 980__ $$aVDB
000885810 980__ $$aUNRESTRICTED
000885810 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000885810 980__ $$aI:(DE-Juel1)PGI-6-20110106
000885810 980__ $$aAPC
000885810 9801_ $$aAPC
000885810 9801_ $$aFullTexts