| Hauptseite > Publikationsdatenbank > Structural perspective on revealing heat dissipation behavior of CoFe 2 O 4 –Pd nanohybrids: great promise for magnetic fluid hyperthermia > print |
| 001 | 885810 | ||
| 005 | 20220930130255.0 | ||
| 024 | 7 | _ | |a 10.1039/D0CP02076A |2 doi |
| 024 | 7 | _ | |a 1463-9076 |2 ISSN |
| 024 | 7 | _ | |a 1463-9084 |2 ISSN |
| 024 | 7 | _ | |a 2128/26462 |2 Handle |
| 024 | 7 | _ | |a 33078790 |2 pmid |
| 024 | 7 | _ | |a WOS:000597256600078 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-04101 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Shams, S. Fatemeh |0 P:(DE-Juel1)170029 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Structural perspective on revealing heat dissipation behavior of CoFe 2 O 4 –Pd nanohybrids: great promise for magnetic fluid hyperthermia |
| 260 | _ | _ | |a Cambridge |c 2020 |b RSC Publ. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1607609013_18798 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Loss mechanisms in fluid heating of cobalt ferrite (CFO) nanoparticles and CFO–Pd heterodimer colloidal suspensions are investigated as a function of particle size, fluid concentration and magnetic field amplitude. The specific absorption rate (SAR) is found to vary with increasing particle size due to a change in dominant heating mechanism from susceptibility to hysteresis and frictional loss. The maximum SAR is obtained for particle diameters of 11–15 nm as a result of synergistic contributions of susceptibility loss, including Néel and Brownian relaxation and especially hysteresis loss, thereby validating the applicability of linear response theory to superparamagnetic CFO nanoparticles. Our results show that the ferrofluid concentration and magnetic field amplitude alter interparticle interactions and associated heating efficiency. The SAR of the CFO nanoparticles could be maximized by adjusting the synthesis parameters. Despite the paramagnetic properties of individual palladium nanoparticles, CFO–Pd heterodimer suspensions were observed to have surprisingly improved magnetization as well as SAR values, when compared with CFO ferrofluids. This difference is attributed to interfacial interactions between the magnetic moments of paramagnetic Pd and superparamagnetic/ferrimagnetic CFO. SAR values measured from CFO–Pd heterodimer suspensions were found to be 47–52 W gFerrite−1, which is up to a factor of two higher than the SAR values of commercially available ferrofluids, demonstrating their potential as efficient heat mediators. Our results provide insight into the utilization of CFO–Pd heterodimer suspensions as potential nanoplatforms for diagnostic and therapeutic biomedical applications, e.g., in cancer hyperthermia, cryopreserved tissue warming, thermoablative therapy, drug delivery and bioimaging. |
| 536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |f POF III |x 0 |
| 536 | _ | _ | |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717) |0 G:(EU-Grant)823717 |c 823717 |f H2020-INFRAIA-2018-1 |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Ghazanfari, Mohammad Reza |0 0000-0001-8514-6831 |b 1 |
| 700 | 1 | _ | |a Pettinger, Susanne |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Tavabi, Amir H. |0 P:(DE-Juel1)157886 |b 3 |
| 700 | 1 | _ | |a Siemensmeyer, Konrad |0 0000-0002-7271-7989 |b 4 |
| 700 | 1 | _ | |a Smekhova, Alevtina |0 P:(DE-Juel1)166560 |b 5 |
| 700 | 1 | _ | |a Dunin-Borkowski, Rafal E. |0 P:(DE-Juel1)144121 |b 6 |
| 700 | 1 | _ | |a Westmeyer, Gil G. |0 0000-0001-7224-8919 |b 7 |
| 700 | 1 | _ | |a Schmitz-Antoniak, Carolin |0 P:(DE-Juel1)162347 |b 8 |
| 773 | _ | _ | |a 10.1039/D0CP02076A |g p. 10.1039.D0CP02076A |0 PERI:(DE-600)1476244-4 |n 46 |p 26728-26741 |t Physical chemistry, chemical physics |v 22 |y 2020 |x 1463-9084 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/885810/files/Sales%20Invoice_INV_008074.pdf |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/885810/files/d0cp02076a.pdf |
| 856 | 4 | _ | |y Published on 2020-10-07. Available in OpenAccess from 2021-10-07. |u https://juser.fz-juelich.de/record/885810/files/Manuscript%20_%20PCCP.pdf |
| 909 | C | O | |o oai:juser.fz-juelich.de:885810 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)170029 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)157886 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)144121 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)162347 |
| 913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |2 G:(DE-HGF)POF3-100 |v Controlling Configuration-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-10 |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-10 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-10 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-10 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-10 |
| 915 | _ | _ | |a Allianz-Lizenz / DFG |0 StatID:(DE-HGF)0400 |2 StatID |d 2020-01-10 |w ger |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS CHEM CHEM PHYS : 2018 |d 2020-01-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-01-10 |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2020-01-10 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-10 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-01-10 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-10 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-6-20110106 |k PGI-6 |l Elektronische Eigenschaften |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-6-20110106 |
| 980 | _ | _ | |a APC |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|