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We investigate the spin-orbit torque exerted on the magnetic moments of the transition-metal impurities Cr,
Mn, Fe, and Co, embedded in the surface of the topological insulator Bi2Te3, in response to an electric field and a
consequent electrical current flow in the surface. The multiple scattering problem of electrons off impurity atoms
is solved by first-principles calculations within the full-potential relativistic Korringa-Kohn-Rostoker (KKR)
Green function method, while the spin-orbit torque calculations are carried out by combining the KKR method
with the semiclassical Boltzmann transport equation. We analyze the correlation of the spin-orbit torque to the
spin accumulation and spin flux in the impurities and unveil the effect of resonant scattering. In addition, we
relate the torque to the resistivity and Joule heat production. We predict that the Mn/Bi2Te3 is optimal among
the studied systems.
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I. INTRODUCTION

The field of spintronics [1,2], which aims at controlling the
electron spin degree of freedom, has proven to be a power-
ful tool to design devices with applications for information
technology. A very active area in this field is the “electrically
controlled spintronics” that is related to the manipulation of
the magnetization by means of an electric field, allowing for
high density of magnetic memory components in memory
devices [3,4].

The main research direction in this area concerns the
current-induced spin torque effect that was pioneered by
Slonczewski [5] and Berger [6] in 1996. They introduced
the concept of the spin transfer torque [7], according to
which a spin polarized current, emitted from a ferromagnetic
layer which acts as the polarizer, causes a precession of the
magnetization of a second ferromagnetic layer. This effect
can be used for an electric-field control of magnetoresistive
random-access memories (MRAMs) [8], interpreting the “up”
or “down” direction of magnetization as the logical states of a
magnetic memory bit and accordingly writing the magnetic
information. In the last few years, another type of current-
induced spin torque, the spin-orbit torque (SOT) [9–11], has
gained ground. Its main advantage is that the charge current
is converted to a spin current allowing the control of magnetic
states without the need of a polarizer. The SOT effect has been
investigated mainly in ferromagnetic bilayers or multilayers
theoretically [12–17] and experimentally [18–20].

A prerequisite for the emergence of the spin-orbit torque
effect is the existence of strong spin-orbit coupling [21] in
materials. This property is shared by topological insulators

*Corresponding author: adkosma@phys.uoa.gr

[22–25] that are narrow-gap semiconductors in the bulk but
conducting in the surface due to metallic surface states. The
strong spin-orbit coupling causes these states to be topolog-
ically protected against surface distortions and gives them a
special spin texture with spin momentum locking, leading
to the absence of spin degeneracy. Due to spin momentum
locking, electrons with opposite group velocities have oppo-
site spin directions. Consequently, the topological insulators
display unique and advantageous properties for spin-transport
applications [26–30].

A SOT effect has been observed in topological insulators
bulk-doped with magnetic transition-metal impurities [31].
Also, (topological insulator)/(ferromagnet) bilayers show a
strong SOT [32–35]. The latter case is difficult to analyze in
realistic systems, because of the complexity of the ferromag-
net’s d bands, as they hybridize with the topological insulator
surface state. On the other hand, ferromagnetically coupled
impurities on topological insulator surfaces affect the surface
state only minimally and can be understood in relatively sim-
pler terms. This idea has motivated the present paper.

Our work focuses on the phenomenon of the SOT on mag-
netic moments of magnetic transition-metal impurity atoms
(Cr, Mn, Fe, and Co) embedded in the surface of the topo-
logical insulator Bi2Te3 [36,37]. In these systems, the SOT
represents the precession of the magnetization of the magnetic
impurities in response to an electrical current generated by
an electric field in the surface. This precession results from
the transfer of spin angular momentum of current-carrying
conduction electrons to the magnetic atoms during scattering
between surface states of different momentum and conse-
quently different spin polarization. The strong topological
insulator Bi2Te3 is chosen as the substrate, since it is one
of the most studied topological insulators. Its simple band
structure consists of a single Dirac cone which extends well
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FIG. 1. The spin polarization of the Fermi surface states of
the topological insulator Bi2Te3 film (side view). The red arrow
in the middle represents the magnetization M of the magnetic
impurity atom.

into the bulk band gap in the vicinity of the Ŵ point [38],
building a simple hexagonal snowflake-shaped Fermi surface
[39]. Due to the metallic surface states and the insulating
bulk of the topological insulator, all current flows near the
surface, where the SOT effect takes place, suggesting optimal
efficiency. In addition, the spin polarization s of the Fermi sur-
face states is predominantly in the plane of the Bi2Te3 surface
and, consequently, perpendicular to the magnetic impurity
spin M which is taken along the surface normal, maximizing
the product s × M that governs the torque. The situation is
shown in Fig. 1. The preferred out-of-plane orientation of the
magnetic moment axis has been established by experiments
[40–42] for the Mn/Bi2Te3 and Fe/Bi2Te3 systems. From the
preceding description it is clear that we are after an extrinsic
(impurity-mediated) SOT effect. Accordingly, as we describe
later, our formalism accounts for Fermi-surface but not Fermi-
sea contributions.

The paper is organized as follows. In Sec. II A, we give
the formalism for the calculation of the matrix elements of the
spin, spin-orbit torque and spin flux operators. In Sec. II B, we
present the approximation, based on the Boltzmann formal-
ism, by which we calculate the nonequilibrium distribution
function and the response coefficients in an applied electric
field. A modification of the usual Boltzmann formalism be-
yond the independent scattering approximation is presented
in Sec. II C. In Sec. III, we provide a description of the Bi2Te3

system. Section IV includes the results, the correlation of the
calculated quantities, and a discussion on the Joule heat as a
function of the torque. Finally, the main conclusions of this
study are summarized in Sec. V.

II. METHODOLOGY

The electronic structure of the host and impurity system
and the Fermi surface are calculated using the local density
approximation (LDA) within density-functional theory (DFT)
[43,44] by means of the full-potential relativistic Korringa-
Kohn-Rostoker (KKR) Green function method [45–47]. The
KKR formalism for the calculation of Fermi surfaces, im-
purity scattering and spin transport using the Boltzmann
equation [48], has been used in the past for problems related
to the present study, e.g., for the investigation of the spin
Hall [46,49] and the spin Nerst effect [50]. For this study,
the development of the formalism is based on the work of

Géranton et al. [16], who studied the spin-orbit torque effect
on the atoms of the magnetic host system FePt. We extend this
methodology to the spin orbit-torque effect on the impurity
atoms. In particular, we perform the calculations using the
impurity scattering wave functions instead of the host Bloch
wave functions. In addition, the multiple scattering of elec-
trons off impurities is included in our study.

A. Spin accumulation, spin-orbit torque and spin flux

in the KKR representation

At first, we calculate the states of the host system ψk on the
Fermi surface, which obey the Bloch’s theorem, making use
of the KKR secular equation. In a second step, we solve the
scattering problem, due to the existence of the impurities in
the surface of Bi2Te3. The impurity scattering wave functions
ψ

imp
k

are calculated by the Lippmann-Schwinger equation:

ψ
imp
k

(r + Rµ) = ψk(r) +

∫

dr′Gimp(r, r′)�V (r′)ψk(r′),

(1)

where Rµ is the center of the µth atomic cell. The effect of
the impurities in the crystal is described by the perturbing
potential �V , which is defined as the difference between the
impurity potential V imp and the potential of the host system
V host (�V = V imp − V host). The impurity Green function Gimp

is related to the Green function of the host system by the
Dyson equation Gimp = Ghost + Ghost�V Gimp.

The knowledge of the scattering wave functions allows us
to determine the expectation values of the spin, torque and
spin flux. The ith Cartesian component of the spin expectation
value for the scattering state k on the Fermi surface integrated
in the volume of the atomic cell �µ of the impurity atom µ is
written as

〈σiµ〉k =

∫

�µ

dr
[

ψ
imp
k

(r)
]†

σi

[

ψ
imp
k

(r)
]

. (2)

The torque operator is defined as the external product of
the spin with the magnetic part of the exchange-correlation
field [9,13]

T (r) = −σ × Bxc(r), (3)

where σ represents the vector of Pauli matrices. The spin-
polarized part of the exchange correlation potential Bxc (in
units of energy), is calculated within the LDA, and it is
directed opposite to the local magnetization vector M [13].
According to the definition of the torque operator, we derive
the expression of the ith torque expectation value for the
scattering state k at the impurity atom µ:

〈Tiµ〉k = −
∑

pq

ǫipq

×

∫

�µ

dr
[

ψ
imp
k

(r)
]†

σp

[

ψ
imp
k

(r)
]

Bxc
q (r), (4)

where ǫipq is the Levi-Civita symbol and the indices i, p, q

take the values x, y, and z.
We can determine how much of the spin current that enters

the sphere which encloses the impurity atom contributes to
the spin-orbit torque and how much is lost to the spin lattice
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interaction by calculating the spin flux. The spin flux oper-
ator is analogous to the spin current operator, but represents
the magnetic moment through the spin current which enters
the muffin-tin sphere of the atom µ. The expectation value of
the spin flux operator for a Fermi surface state at the impurity
atom µ is given by the relation [13,16,51]

〈Qiµ〉k =
µBh̄

2ie

∫

Sµ

dS
[[

ψ
imp
k

(r)
]†

σi∇ψ
imp
k

(r)

−
[

∇ψ
imp
k

(r)
]†

σiψ
imp
k

(r)
]

, (5)

where h̄ is the reduced Planck constant, e = −|e| is the elec-
tron’s charge, µB is the Bohr magneton, and the integration
takes place on the surface Sµ of the muffin-tin sphere of the
atom µ.

It is straightforward to cast the above equations into the
full-potential relativistic KKR formalism, taking into account
the KKR representation of the Green function and wave func-
tions. We refer to Refs. [16,47,52] for details.

B. Nonequilibrium state

The calculations of the spin accumulation, the impurity-
driven spin-orbit torque, and the spin flux in the nonequilib-
rium state, applying an external electric field in the system,
are based on Boltzmann formalism.

Within the semiclassical approach, the distribution func-
tion of the nonequilibrium system fk is defined as the sum of
the equilibrium Fermi-Dirac distribution function f 0(Ek) and
the deviation of the equilibrium gk, fk = f 0(Ek) + gk.

Having solved the multiple scattering problem in the KKR
representation, we compute the vector mean free path �k,
solving the self-consistent linearized Boltzmann equation for
nominal impurity concentration of 1 (the treatment for the
wished concentration is presented in Sec. II C)

�k · n̂E = τk

[

vk · n̂E +
∑

k′

wkk′ (�k′ · n̂E )

]

, (6)

where vk is the group velocity, and n̂E = E/|E| is the direction
of the electric field E . The Boltzmann equation includes the
“scattering in term” and is solved self-consistently beyond the
relaxation time approximation, thus accounting for the vertex
corrections [49,53]. The scattering rate wkk′ is expressed in
terms of the T matrix by Fermi’s golden rule

wkk′ =
2π

h̄
δ(E (k) − E (k′))|Tkk′ |2. (7)

The transition matrix T is given by the relation

Tk′k =

∫

drψ†
k′ (r)�V (r)ψ imp

k
(r). (8)

Furthermore, the relaxation time in Eq. (6) is τk =

1/
∑

k′ wkk′ . It is important to note that our calculations are
not based on the independent scattering approximation, as
explained in the following Sec. II C.

Once the vector mean free path has been evaluated, we find
the linearized expression with respect to the electric field for

the deviation of the equilibrium distribution function gk

gk = −e
∂ f 0(Ek)

∂Ek

�k · E . (9)

Having estimated the gk, one can proceed with the calculation
of the spin-orbit torque that is exerted on impurity atom µ,
which is written by means of the deviation distribution func-
tion in Boltzmann formalism as

Tµ =
∑

k

gk〈T µ〉k. (10)

The torque expectation value is computed by Eq. (4). Replac-
ing the deviation distribution function [Eq. (9)] in the above
equation we obtain the following Fermi surface (FS) integral
for the impurity-driven spin-orbit torque

Tµ = −
e

h̄SBZ

∫

FS

dk

|vk|
(〈T µ〉k ⊗ �k) · E, (11)

where SBZ is the Brillouin zone surface.
In this study, we focus on the linear response of the SOT to

an external electric field, which is represented by the torkance
tensor tµ [13]

Tµ = tµE . (12)

It is easily proved by Eqs. (11) and (12) that the torkance is
computed by the expression

tµ = −
e

h̄SBZ

∫

FS

dk

|vk|
〈T µ〉k ⊗ �k. (13)

In a similar way, the response coefficient of the spin accumu-
lation χµ, and the response coefficient of the spin flux qµ to
the electric field are calculated in Boltzmann formalism by the
following integrals:

χµ = −
eµB

h̄SBZ

∫

FS

dk

|vk|
〈σµ〉k ⊗ �k, (14)

qµ =
e

h̄SBZ

∫

FS

dk

|vk|
〈Qµ〉k ⊗ �k. (15)

On the above Eqs. (14) and (15), the expectation values of
the spin accumulation 〈σµ〉k and the spin flux 〈Qµ〉k are
determined by Eqs. (2) and (5), respectively.

In addition, we can find the current density j, which is
calculated by means of the distribution function. According to
Ohm’s law, the knowledge of the current density allows us to
compute the conductivity tensor σi j , as it is readily obtained as
the prefactor to the electric field. Thus the conductivity tensor
is given by the equation

σi j =
e2

4π2

∫

FS

dk

h̄|vk|
(vk)i (�k) j . (16)

After computing the diagonal elements of the conductivity
tensor, we can estimate the resistivity ρ, which is defined
as ρ = σ−1.

C. Multiple scattering and averaging over configurations

The Fermi wavevector in Bi2Te3 is of the order of kF ≈

0.2Å−1, which gives an estimated Fermi wavelength of λF =

2π/kF ≈ 50Å ≈ 12aNN, where aNN = 4.38Å is the nearest-
neighbor distance in the surface. At the surface concentrations
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FIG. 2. (a) Illustration of the first quintuple layer of Bi2Te3 in
side and (b) top views. The pink (medium-sized) and the gray (large)
spheres represent the Te and Bi atoms, respectively. The magnetic
impurity atom is depicted in red (small sized sphere). The impurity
shows an inward relaxation with respect to the surface Te layer
with vertical distance of 0.9 Å, as has been found for Fe impurities
by Eelbo et al. [42]. (c) Schematic representation of the random
positions of the defects on the surface in one of the random configura-
tions. The filled red (gray-colored in gray-scale) circles represent the
magnetic transition metal defects. The filled black and empty circles
depict unoccupied surface impurity sites (threefold hollow positions
with fcc stacking with respect to the surface layer), respectively
inside and outside the disk in which the 51 impurities are embedded.

of 2% and 5%, that we wish to study, the average distance be-
tween impurities is of the order of 7aNN and 4.5aNN. Clearly,
many defects will be present within a radius of one wave-
length around the impurity. Therefore, the approximation of
independent impurity scattering, that is conventionally used
in the Boltzmann equation, becomes questionable. In other
words, the scattering rate wkk′ cannot be approximated by the
rate of a single impurity, scaled by the concentration.

Hence, we take a different approach, that bears an analogy
with the explicit supercell averaging used for SOT calcula-
tions in a Co/Pt bilayer (see Ref. [54]). We explicitly consider
a collection of Ndef = 51 defects, randomly placed within a
circular disk of a radius of a few λF , while outside the disk
we consider boundary conditions of the pristine host [see
Fig. 2(c)]. The radius is adjusted so that the number of defects
in the disk corresponds to the concentration. Formally, this
collection is treated as a single super-impurity, for which the
Green function Gimp, the scattering states (1) and the transition
matrix (8) are calculated. The resulting scattering states and

scattering rate include the amplitudes and phases of all mul-
tiple scattering events off defects within this radius, summed
to all orders. In a second step, the scattering rate is scaled by
an appropriate concentration of superimpurities, so that the
concentration of defects is matched. Thus, if c is the wished
defect concentration, then the disk radius is adjusted to en-
close Ndisk = Ndef/c surface atoms. If the calculated scattering
rate by the superimpurity of Ndef atoms is wkk′ , then we set a
concentration of ximp = c/Ndef in the Boltzmann Eq. (6)

(ximp�k · n̂E )Ncr

= τk

[

vk · n̂E + Ncr

∑

k′

wkk′ (ximp�k′ · n̂E )

]

, (17)

The problem of finding the Green function of a system with
51 defects poses no numerical difficulty (see Appendix A).

In a third step, we calculate a number of Nconf = 20 dif-
ferent random defects configurations, but always fixing one
defect at the center of the disk. We consider this central defect
as the most representative of the situation of a homogeneously
doped surface. In the results, we show the torque acting on the
moment of the central defect only.

III. STUDIED SYSTEM

We investigate the surface of Bi2Te3 [55] doped with
magnetic transition-metal impurities. We study the four differ-
ent defects systems Cr/Bi2Te3, Mn/Bi2Te3, Fe/Bi2Te3, and
Co/Bi2Te3. The surface of Bi2Te3, i.e., the structure of the
host system, is simulated by a thick film of six quintuple layers
of Bi2Te3 including nine vacuum layers on top and bottom
to ensure a proper embedding into the vacuum. The impurity
atoms are embedded in the interstitial position between the
first Te and Bi layer, in fcc hollow site according to the
experiments [42], as it is shown in Figs. 2(a) and 2(b), where
the position of the defect in the first quintuple layer is shown
from a side view and in a top view, respectively. In particular,
the impurity position layer is shifted inward by 0.9 Å with
respect to first Te layer. For sure, in experiment, the exact
position can change for different impurity types. This should
have no qualitative consequences on our conclusions, which
are related primarily to the simple form of the spin scattering
of the Fermi-surface states, as we elaborate in the following
sections.

In the context given in Sec. II C, we consider two concen-
trations: 2%, corresponding to Ndef = 51 defects, randomly
placed within a disk of Ndisk = 2539 positions, and 5%, cor-
responding to Ndef = 51 defects within a disk of Ndisk = 1027
positions. A statistical averaging is achieved by considering
Nconf = 20 different random configurations. For comparison
with the conventional Boltzmann formalism, we also calculate
results using the scattering rate from a single defect (neglect-
ing multiple scattering).

We take the defect magnetic moments to be perpendic-
ular to the surface, in accordance to findings [40–42] for
the Mn/Bi2Te3 and Fe/Bi2Te3 systems. Furthermore, we as-
sume a ferromagnetic alignment of the magnetic defects, as
has been observed experimentally at 2% concentration for
Mn defects and at >3% for Co defects [41]. Of course,
the aforementioned assumptions have not been found for all
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considered defect types at all concentrations (e.g., for Co, an-
tiferromagnetic interactions appear at 2% concentration [41]).
Extending the assumptions of out-of-plane orientation and
ferromagnetism to all cases should be considered a numer-
ical experiment. We know from previous studies [41] that
ferromagnetic interactions can be engineered by appropriate
doping that shifts the Fermi level of the system and could con-
ceivably be achieved in all four types of defects. Analogous
engineering is conceivable for the magnetic anisotropy. In
addition, by treating all types of defects on the same footing,
we gain understanding of the chemical trends of the SOT
mechanism.

IV. RESULTS AND DISCUSSION

A. Computational details

The density functional calculations for the electronic struc-
ture of the Bi2Te3 film were carried out with the Jülich full
potential relativistic KKR code [56]. For the computation of
the Green functions, a finite angular momentum cutoff of
lmax = 3 was used.

The self-consistent potential of the impurity atoms was
computed using the Jülich KKR impurity-embedding code
KKRIMP [57] in a cluster including the 14 nearest neighboring
sites of the defect, which is sufficient for the correct charge
screening due to the metallic surface states. The impurity-
atom potential is then placed in the respective 51 random
impurity positions. This approximation saves computational
time compared to a fully self-consistent calculation of the
system of 51 impurities together. Tests have shown that the
approximation is adequate for the description of the poten-
tial, if the impurities occupy farther than nearest-neighbour
positions, which holds for the great majority of cases at low
concentration. The multiply scattered wave function and the
scattering rate are calculated in this way.

Fermi surface calculations as well as Boltzmann transport
computations were performed with the Jülich PKKR code
[47]. For the calculations of the response coefficients we used
78 k-points in the full Fermi surface of Bi2Te3, which is
adequate, since the FS consists of only a single closed loop
near the center of the SBZ.

B. Response coefficients to the electric field

In this section, we present and discuss the results of our
study. Applying the Boltzmann formalism outlined in Sec. II,
we performed calculations for the response coefficients of the
spin accumulation χ, the spin-orbit torque t and the spin flux
q in the electric field, that are exerted on the magnetic moment
of the impurity atoms embedded in Bi2Te3 surface.

We present the results of the tensor components in response
to the electric field in y direction Ey, which respects the
reflection symmetry over the y-z plane in the host structure.
The components with the electric field in the x direction are
not shown, since we found that the results do not change
appreciably. Obviously, the z component of the torkance is
zero, since the moments point along the z axis. Testing the
simple, single-defect case, we found that the torkance is odd
with respect to reversal of the impurity magnetic moment, i.e.,
the SOT is fieldlike.

The results are shown in Fig. 3. Comparing the results
of the single defect system with the corresponding results
for the central atom of the many impurities system for the
different configurations, which is shown in Figs. 3(a)–3(d),
we find that the single impurity system is not representative
in general. This is anticipated, as the independent scattering
approximation is not valid in this system, in other case the
average torkance over the many impurities systems would
correspond to the single impurity system (The reader can find
the detailed analysis in Appendix B). Instead, we observe
that the torkance presents a spread for all different types of
impurities systems. We also find that the largest value of the
torkance is exerted on the Mn moment.

As it is shown in Figs. 3(e)–3(h), where the torkance versus
the response coefficient of the spin accumulation is plotted,
there is no linear correlation between the spin of the conduc-
tion electrons and the spin-orbit torque, as one might except
from simple models. This absence of linear correlation is due
to the atom size, as the torkance is calculated by a convolution
involving one integral which includes the external product
[see Eq. (4)], and it is not a product of the total spin and
magnetic field.

In the following, the response coefficient of the spin flux
is investigated. In Figs. 3(i), 3(j) and 3(l), we observe that the
torque has almost a linear dependence on the spin flux for the
system of Bi2Te3 doped with Cr, Mn, and Co impurities. This
demonstrates that the SOT exerted on the impurity moment is
essentially mediated by spin currents in these systems, while
the spin-lattice contribution due to the spin-orbit coupling
in the impurity atomic sphere is negligible. On the contrary,
the spin-lattice interaction is significant on the Fe impurities
system, as it is shown in Fig. 3(k) there is still a correlation be-
tween the SOT and the spin flux, but not as strong as the other
impurities systems. The latter indicates that in the Fe/Bi2Te3

system a part of the current contributes to the spin precession
of the Fe impurity, while the rest is lost to the spin-lattice
interaction. From the density of states (DOS) of the impurity
atoms (Fig. 4), it is observed that the Fe impurity presents a
resonance exactly on the Fermi level, whereas the resonance
of the other impurity atoms (Co, Mn, Cr) is somewhat shifted
with respect to the Fermi level. Therefore a longer delay time
[58] of the scattered conduction electron in the Fe system is
expected, i.e., the electrons interact a longer time with the
spin-orbit field of the nucleus [59]. As a result, there is a
strong interaction of the spin with the lattice in this system.

Next, we compare the results of the systems with 2%
and 5% defects concentration, in order to find how the im-
purities concentration affects the spin, the spin-orbit torque,
and the spin flux. The absolute response coefficients of
the averaged spin-orbit torque t =

√

(txy)2 + (tyy)2, the spin
flux q =

√

(qxy)2 + (qyy)2, and the spin accumulation χ =
√

(χxy)2 + (χyy)2 in an applied electric field Ey are presented
for the two different defect concentrations in Fig. 5. Com-
paring Figs. 5(a) and 5(b), we find that the magnitude of the
torkance, the spin flux and the spin accumulation is greater in
the case of lower concentration for all types of impurities. This
observation is consistent with the fact that a lower concentra-
tion leads to a less perturbed topological surface state. This
case is closer to the ideal situation, where the electron states
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FIG. 3. [(a)–(d)] The y component of the torkance tyy as a function of the x component of the torkance txy, [(e)–(h)] the torkance tyy

as a function of the response coefficient of the spin accumulation χxy, [(i)–(l)] the torkance tyy as a function of the response coefficient of
the spin flux qyy, on the central Cr, Mn, Fe, and Co impurity atom in the presence of 1 defect (squares) and 2% defects concentration for
20 different distributions (circles), embedded in Bi2Te3 surface. The results are scaled to a 2% concentration of defects. The electric field is
taken in y direction. The torkance is given in units of eaB = 9 × 10−5µBT/(V/cm). The spin accumulation is given in units of eaBµBRy−1 =

3 × 10−10µB/(V/cm).

incident on the defects have their spin in-plane, perpendicular
to the defect magnetization, and produce maximal torque.
The Mn/Bi2Te3 system displays the largest torkance at both
concentrations, in line with the results of Fig. 3. The lowest
torkance is seen in the Fe/Bi2Te3 system, for which we expect
the strongest resonant scattering.

For practical applications, we are also interested in the time
needed for a reversal of the impurity moment direction. We
can estimate this by means of the angular rotation velocity
per unit electric field which normalizes the torkance to the
impurity moment modulus mat:

ω =
1

E
θ̇ =

2µB

h̄mat
t . (18)

Moreover, according to Eq. (16), we can compute the lon-
gitudinal resistivity (ρyy = σ−1

yy ) of the impurity atoms. By
the knowledge of the torkance and the resistivity, the torque

for a given current density jy can be derived. We define the
linear-response coefficient

t̃ =
T

jy
= t ρyy. (19)

Knowledge of this quantity serves two purposes. First, it pro-
motes the viewpoint of the torque resulting as a response to the
current, instead of the electric field. This picture is convenient
especially in magnetic-impurity systems: we have the spin
of the current-carrying electronic states of the host, on the
one hand, and the electronic and magnetic structure of the
impurity, on the other hand. The interaction of the two, due
to spin scattering, produces the torque. The electric field does
not enter the above picture, even though in reality it is the
cause of the current.

The second purpose of introducing t̃ , is that its product with
the torkance, (t̃ t ), is related to the Joule heat produced per
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FIG. 4. The local spin-resolved density of states (DOS) of the
Cr, Mn, Fe and Co impurity atoms. The positive y axis corresponds
to majority spin and the negative y axis to minority spin.

unit time and volume, Q̇, in order to achieve a given torque
value T :

Q̇ = ρyy j2
y =

T 2

t̃ t
. (20)

What we calculate here is actually a lower bound to the Joule
heat, assuming that the magnetic-impurity scattering is the
dominant source of resistivity.

The computed magnetic moments of the defects are pre-
sented in Table I. The results of the resistivity, the ratio of the
SOT to the current density and the rotation velocity for Cr,
Mn, Fe, and Co impurity atoms are depicted in Fig. 6. One

FIG. 5. (a) The average torkance t (circles), spin flux q (trian-
gles), and spin accumulation χ (squares) on the central atom in the
presence of 2% and (b) 5% concentration of Cr, Mn, Fe, and Co
impurities embedded in the Bi2Te3 surface. The values are averaged
over the 20 different configurations and the error bars indicate the
standard deviation of the values.

TABLE I. The computed spin magnetic moments mat of the mag-
netic defects and their Joule heat factor 〈(t̃ t )−1〉.

Impurity type mat (µB) 〈(t̃ t )−1〉 (S/(e2a2
B))

Cr 3.331 2497.407
Mn 3.456 51.207
Fe 2.382 1160.321
Co 1.027 175.831

can easily observe that the Mn/Bi2Te3 system presents the
lowest resistivity, a large spin-orbit torque for a given current,
and large rotation velocity. As a consequence, this system is
optimal for applications. Although a large torque for a given
current is calculated in the Fe/Bi2Te3 system, this system
presents the largest resistivity due to the resonant scattering
of the Fe atoms, rendering it less optimal for applications.

The factor 〈(t̃ t )−1〉, averaged over the 20 configurations,
is presented in Table I. We find that the Joule heat for a given
spin-orbit torque is much smaller in Mn/Bi2Te3 than the other
impurity types systems, that results in fastest and energetically
most efficient switching, i.e., has the lowest resistivity and the
Joule heat production.

V. CONCLUSIONS

In summary, we have applied the full-potential relativistic
KKR Green function method and the Boltzmann formalism to
perform calculations of the response coefficients of the spin,
spin-orbit torque and spin flux on magnetization of magnetic
impurity atoms (Cr, Mn, Fe, Co) embedded in the surface
of the topological insulator Bi2Te3. The method takes into
account the multiple scattering off impurities.

We found a strong spin-orbit torque effect in Bi2Te3 doped
with magnetic transition-metal atoms. Our findings validate
that topological insulators with a simple bandstructure are
favorable materials for application of the spin-orbit torque

FIG. 6. The resistivity ρyy (circles), the torkance on the central
impurity atom multiplied by the resistivity t̃ = tρyy [Eq. (19)] (tri-
angles), and the angular rotation velocity ω per unit electric field
[Eq. (18)] (squares), averaged over the 20 different configurations,
in the presence of 2% defects concentration in the (Cr, Mn, Fe,
Co)/Bi2Te3 systems. The electric field is taken in y direction.

144424-7



ADAMANTIA KOSMA et al. PHYSICAL REVIEW B 102, 144424 (2020)

effect. The main reason for this enhanced effect is due to
its special characteristics, i.e., the localized surface states and
the perpendicular spin polarization of the surface states with
respect to the magnetization of the defects. Finally, we pre-
dict that the Mn/Bi2Te3 system is the most promising. Our
results show that this system presents the lowest resistivity,
large spin-orbit torque for a given current, and a large rotation
velocity for a specific electric field. In addition, the magnetic
moment of the Mn impurity atom is the largest of the four
impurity types systems and the Joule heat factor was calcu-
lated at least one order of magnitude lower compared to the
other impurity types that we considered. Another important
characteristic is that it has been shown theoretically and ex-
perimentally [41] that the Mn impurity atoms embedded in
Bi2Te3 surface present ferromagnetic behavior in the case of
2% concentration, which adds confidence on the prospects for
application of this system.
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APPENDIX A: NUMERICAL CONSIDERATIONS ON THE

GREEN FUNCTION OF THE SYSTEM WITH DEFECTS

The Green function of the impurity system is calculated in
the KKR method by means of the algebraic Dyson equation

G
imp,nn′

LL′ = Gnn′′

LL′ +
∑

n′′L′′L′′′

Gnn′

LL′′

(

t
imp,n′′

L′′L′′′ − tn′′

L′′L′′′

)

G
imp,n′′n′

L′′′L′ ,

where n, n′, n′′ are atom-site indices and L, L′, . . . are in-
dices combining the angular-momentum and spin of an atom

TABLE II. The average scattering rate of the many impurities
systems for the 20 different configurations τ−1

51imp divided by the
scattering rate of the single impurity system τ−1

1imp, in the presence
of 2% defects concentration in the (Cr, Mn, Fe, Co)/Bi2Te3 systems.

Impurity type τ−1
51imp/τ

−1
1imp

Cr 141.342
Mn 248.066
Fe 68.546
Co 260.622

at a site. t (E ) and t imp(E ) are the T matrices of the host
and impurity atoms, respectively. Gimp(E ) is the unknown
matrix for the Green function of the system with impuri-
ties and G(E ) is the known matrix of the host system. This
linear set of equations has a dimension proportional to the
number of sites for which t

imp,n′′

L′′L′′′ (E ) �= tn′′

L′′L′′′ (E ), i.e., to the
number of defects. In this way, the problem at hand becomes
numerically tractable, since the number of defects (51) that
we place in the disk results in a linear system of dimension
Ndef × 2(lmax + 1)2 = 1632, where the number of spin and
angular-momentum components at a cutoff of lmax = 3 has
been accounted for [2(lmax + 1)2 = 32].

APPENDIX B: INDEPENDENT SCATTERING

APPROXIMATION

To investigate the independent scattering approximation
we analyze the inverse relaxation time τk = 1/

∑

k′ wkk′

which represents the scattering rate. The approach of inde-
pendent scattering behind the Boltzmann equation is critically
examined, by comparing the calculated scattering rate off
single impurity versus multiple defects system. In Table II,
the ratio of the average scattering rate of the many defects
system for the different configurations to the scattering rate
of the single defect system is presented. There is no linear
scaling of the scattering rate with the number of impurities
in the system. This is consistent with the observation that the
Fermi wavelength is longer than the average distance between
the impurities. Loosely speaking, after a scattering event of
a wave packet off of a defect, there is not enough space for
a new wave packet to be formed, before it is scattered from
another impurity.
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