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Abstract

Recent studies have shown that drug-induced spatial alteration patterns in resting
state functional activity as measured using magnetic resonance imaging (rsfMRI) are
associated with the distribution of specific receptor systems targeted by respective
compounds. Based on this approach, we introduce a toolbox (JuSpace) allowing for
cross-modal correlation of MRI-based measures with nuclear imaging derived esti-
mates covering various neurotransmitter systems including dopaminergic, serotoner-
gic, noradrenergic, and GABAergic (gamma-aminobutric acid) neurotransmission. We
apply JuSpace to two datasets covering Parkinson's disease patients (PD) and
risperidone-induced changes in rsfMRI and cerebral blood flow (CBF). Consistently
with the predominant neurodegeneration of dopaminergic and serotonergic system
in PD, we find significant spatial associations between rsfMRI activity alterations in
PD and dopaminergic (D2) and serotonergic systems (5-HT1b). Risperidone induced
CBF alterations were correlated with its main targets in serotonergic and dopaminer-
gic systems. JuSpace provides a biologically meaningful framework for linking neuro-

imaging to underlying neurotransmitter information.
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1 | INTRODUCTION

Magnetic resonance imaging (MRI)-derived measures are now com-
monly applied to study brain function and structure in health and dis-
ease (Bloudek, Spackman, Blankenburg, & Sullivan, 2011; Bohanna,
Georgiou-Karistianis, Hannan, & Egan, 2008; Drysdale et al., 2017;
Good et al., 2001). Voxel- and region-wise analyses are commonly
applied to study associations between task-based (tbfMRI) and resting
state (rsfMRI) MRI measures and observed symptoms, behavior or
genetic information (van Erp et al, 2015; Meyer-Lindenberg &
Weinberger, 2006; Thompson et al., 2014; Thompson et al., 2020).
RsfMRI measures provide replicable pathophysiological marker for
various behaviors as well as different neurological and psychiatric
conditions (Bernhardt, Bernasconi, Concha, & Bernasconi, 2010;
Holiga et al., 2019; Telesford et al., 2010). Despite this valuable infor-
mation, biological and methodological limitations are imposed with
respect to interpretation of the outcomes of voxel- and region-wise
analyses.

From a methodological point of view, analyses of tbfMRI and
rsfMRI are often limited by the rather low to moderate test-retest
reliability of the commonly applied voxel- and atlas-based measures
(Holiga et al., 2018). This low test-retest reliability and the resulting
low signal-to-noise ratios impede constraints on the ability of fMRI to
identify robust and replicable associations. Correspondingly, to date
both thfMRI and rsfMRI failed to achieve integration into routine clini-
cal applications for the suggested indications (Lee, Smyser, &
Shimony, 2013; Leuthardt et al., 2018). Recent studies have shown
that the overall spatial activity patterns (i.e., the relative within-subject
activation of one region over another) of both tbfMRI and rsfMRI
measures provide much more reliable marker as compared to standard
voxel- and region-wise analyses (Dukart et al, 2018; Holiga
et al., 2018). Making use of this higher reliability may therefore repre-
sent a viable way of improving the replicability of fMRI applications.

From biology point of view, standard analyses of fMRI data focus
on identification of voxel- or region-wise signals associated with a
specific condition. While providing information about the spatial loca-
tion of respective signals, such analyses do not allow drawing conclu-
sions on potential neurophysiological mechanisms underlying the
observed associations. To overcome this limitation, several recently
published studies made use of spatial associations between underlying
biology and observed imaging alterations by correlating ex vivo micro
RNA spatial expression patterns with different imaging measures (Liu
et al., 2019; Rizzo, Veronese, Expert, Turkheimer, & Bertoldo, 2016;
Selvaggi et al., 2018). The major idea behind such analyses is that
disease- or drug-induced changes in imaging measures occur in associ-
ation with availability of a specific tissue property (i.e., expression of a
specific receptor) that is affected by the respective condition. For
example, in a disease that is primarily associated with loss of dopami-
nergic neurons, one would expect strongest imaging changes in
regions, which contain many of such neurons in healthy individuals.
While promising, this approach also makes several assumptions that
do not necessarily hold or are unknown for many of the underlying

systems (Unterholzner et al., 2020). For example, correlations with

mRNA expression imply that the respective genes are transcribed and
lead to measurable changes of tissue structure or function. A viable
way of making use of this concept while avoiding these assumptions
is by integration of positron emission tomography (PET) or single pho-
ton computed emission tomography (SPECT) derived tissue property
maps. Recent advancements in PET and SPECT tracer development
resulted in a variety of novel tracers that can reliably measure the
availability of specific receptors but also functional aspects such as
synthesis capacity across a variety of neurotransmitters (Beliveau
et al, 2017; Lehto et al, 2015; Mawlawi et al., 2001; McCann
et al., 2005; Smith et al., 1998). Such PET- and SPECT-derived maps
provide a more direct measurement of specific tissue properties as
compared to mRNA expression. In line with that, we have shown that
MRI-derived spatial activity patterns induced by different drugs corre-
late with PET- and SPECT-derived information that are associated
with the mechanism of action of respective compounds (Dukart
et al,, 2018).

Here we introduce the JuSpace toolbox allowing for spatial corre-
lation of MRI-based or other imaging modalities with PET- and
SPECT-derived maps covering a variety of neurotransmitter systems.
To demonstrate its utility, we deploy the toolbox to rsfMRI data of
Parkinson's disease (PD) patients on and off levodopa—a disease with
devastating effects on multiple neurotransmitter systems, including
major contributions from dopamine and serotonin (Booij et al., 1997;
Pagano, Niccolini, Fusar-Poli, & Politis, 2017) - as well as to cerebral
blood flow data of healthy volunteers scanned on and off risperidone

- an antipsychotic with a serotonergic and dopaminergic mechanism

of action.
2 | METHODS
21 | Software description

The main idea of JuSpace is to test if MRI-derived information is spa-
tially structured in a way that reflects the distribution of specific bio-
logically interpretable tissue properties as derived from PET and
SPECT modalities. JuSpace is a comprehensive license-free toolbox
(only for noncommercial use) for the integration of PET- and SPECT-
derived modalities with other brain imaging data. However, we do
ask to cite the specific references for the PET and SPECT maps,
which are used for the respective analyses. The references are pro-
vided in Table 1. The currently released version is available at
https://github.com/juryxy/JuSpace). JuSpace has been developed in
the Matlab environment (Matlab 2017a or higher) and requires Sta-
tistical Parametric Mapping Software (SPM12, https://www: fil.ion.
ucl.ac.uk/spm/software/spm12/) as well as the Matlab Statistics
toolbox to be installed. More specifically, SPM routines are used to
load, select and resize images into the atlas space. Gray matter tissue
probability maps from SPM (TPM.nii) are used to account for spatial
autocorrelation (if the respective option is selected). Stats toolbox is
used to compute all correlational and multiple linear regression

analyses.


https://github.com/juryxy/JuSpace
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

TABLE 1 Receptor maps included in the JuSpace toolbox
N healthy
Receptor map Tracer Modality  volunteers Source and reference
DAT (1231)-FP-CIT SPECT 174 Citation: (Dukart et al., 2018)
GABAa (11C)flumazenil PET 6
D2 (11C)Raclopride PET 7 Source: https://datadryad.org/resource/doi:10.5061/
dryad.rc073
Citation: (Alakurtti et al., 2015)
NET S,5-(11C)O-methylreboxetine PET 10 Citation: (Hesse et al., 2017)
(MRB)

D1 (11C)SCH23390 PET 13 Citation: (Kaller et al., 2017)
Dopamine (18F)fluorodopa PET 12 Source: https://www.nitrc.org/projects/spmtemplate

synthesis Citation: (Gémez, Huertas, Ramirez, & Solis, 2018)
5-HT1a (11C)WAY-100635 PET 36 Source: https://neurovault.org/collections/1206/
5_-HT1b (11C)P943 PET 22 Citation: (Savli et al., 2012)
5-HT2a (F18)altanserin PET 19
SERT (11C)DASB PET 30

Abbreviations: DAT, dopamine transporter; NAT, noradrenaline transporter; PET, positron emission tomography; SERT, serotonin transporter; SPECT,

single photon emission computed tomography.

JuSpace consists of a group of Matlab functions together with
PET receptor maps covering various receptor systems. It provides a
graphical user interface (Figure 1a) as well a direct call to the respec-
tive functions. There are no specific system requirements.

2.2 | Included PET maps

All PET and SPECT maps are free for noncommercial distribution and
were previously published as described in Table 1 and in the release
notes provided with the toolbox. All PET maps were derived from
average group maps of different healthy volunteers and linearly

rescaled to a minimum of 0 and a maximum of 100:

PET —min(PET)
max(PET —min(PET))

PET rescated = 100 %

PET maps covering the following receptor types are included in
the first release: 5-HT1a (serotonin 5-hydroxytryptamine receptor
subtype 1a), 5-HT1b (5-HT subtype 1b), 5-HT2a (5-HT subtype 2a),
D1 (dopamine D1), D2 (dopamine D2), DAT (dopamine transporter),
F-DOPA (dopamine synthesis capacity), GABAa (gamma-aminobutric
acid), NAT (noradrenaline transporter) and SERT (serotonin trans-

porter) (for references see Table 1).

23 | Workflow

The analysis workflow starts with the user selecting the imaging
(i.e., MRI) data to correlate with provided PET and SPECT maps.
Either data for a single modality (“files 1” only) or data to generate a

contrast between conditions (“files 1" and “files 2", i.e., patients

vs. healthy controls or pre- vs. posttreatment data) are entered as
input. The default atlas is the neuromorphometrics atlas from
SPM12 (Friston et al., 1994) excluding all white matter and cerebro-
spinal fluid regions. A symmetric version of the atlas with bilateral
regions of interest (left side flipped) is also included in the release.
Neuromorphometrics atlas probability tissue labels were derived
from the “MICCAI 2012 Grand Challenge and Workshop on Multi-
Atlas (https://masi.vuse.vanderbilt.edu/workshop2012/
index.php/Challenge_Details). The atlas can be changed to any cus-

Labeling”

tom atlas using the “Select atlas” button. The atlas is used to extract
mean regional values from the entered MRI modalities to be corre-
lated with respective values from selected PET and SPECT maps. An
atlas is needed as correlation of voxel-wise maps would result in
highly inflated degrees of freedom. The number of distinct spatial
features strongly depends on data smoothness but is typically in the
range of several hundred or more distinct resolution elements (Mikl
et al., 2008). In that sense, the default atlas with 119 regions pro-
vides a conservative estimate for the effective degrees of freedom.
Next,
options are:

the computing option is selected. Currently available

1. Effect size between groups (computes Cohen's d for each atlas
region between files selected in list 1 and list 2)

2. Effect size of pair-wise differences (computes Cohen's d for pair-
wise differences between files in list 1 relative to list 2)

3. Mean from list 1 (computes mean value per atlas region of all files
from list 1)

4. List 1 each image (extracts mean value per atlas region for each file
from list 1)

5. Compute individual z-score maps for each file in list 1 relative to
list 2.

6. Computes pair-wise differences between list 1 and list 2.


https://masi.vuse.vanderbilt.edu/workshop2012/index.php/Challenge_Details
https://masi.vuse.vanderbilt.edu/workshop2012/index.php/Challenge_Details
https://datadryad.org/resource/doi:10.5061/dryad.rc073
https://datadryad.org/resource/doi:10.5061/dryad.rc073
https://www.nitrc.org/projects/spmtemplate
https://neurovault.org/collections/1206/
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(a) A JuSpace

List group 1 List group 2 (optional)

FIGURE 1 JuSpace toolbox,
(a) User interface of the JuSpace

) Results
I Select atias
1
€ Wsers\dukar\Documen 1
Computing option ;
O 1. Effect size between groups 4

O 2. Effect size of pair-wise differences.
v| O3 Mean fromist 1 v
@ 4. List 1 each image

Select fles O 5. Ind. z-scores modaly 1 rel. to modalty 2 Select fies
O 6. Pair-wise (il st 1 minus kst 2 with PET)
O 7. Leave-one-out (ind. z-scores from list 1)
Q8. List1 alimages against nul distribution

@ Adjust for spatial usin

If selected computes partial correlations adjusted
for spatial distribution of grey matter

toolbox, (b) Schematic work flow
of the JuSpace toolbox

Extraction of mean PET values from atlas regions

Statistical analyses:
> 1.(Partial) Correlations

2.Multiple linear regression

PET / SPECT
maps
Extraction of mean
values from atlas regions
' Computing option
. 1. Effect size (between groups)
List1 e
i 2. Effect size (pair-wise)
1 . % 3. Mean from list 1
data _—
in MNI space vy | 4. List 1 each image

List 2

If option adjust for spatial
autocorrelation

5. 7-scores st 1 each image relative to list 2
6. pair-wise difference (list 1 minus list 2)

| 7. leave-one-out z-scores in list 1

8. List 1 cach image (tests distribution of

correlation coefficients against null
hypothesis)

Controlling for spatial autocorrelation and partial volume using
underlying grey matter probability estimates

7. Computes leave-one-out z-scores maps for each file in list 1 rela-
tive to other files in list 1.

8. Extracts mean value per atlas region for each file from list 1 and
compares correlation coefficients for all images against null
distribution.

Further, the analysis type is selected (Pearson correlation, Spear-
man correlation or multiple linear regression). PET and SPECT maps
can be selected by clicking on the respective name (multiple selection
is supported, that is, hold control button during selection on a Win-
dows machine). The currently available PET and SPECT maps are
listed in Table 1.

Further, the option for exact permutation based p-value (only for
computing options 1, 2, 5, and 6) can be selected (as described below).
Additionally, the option is provided to adjust for spatial autocorrela-

tion using the gray matter probability map TPM.nii from SPM12. The

saving directory has to be specified using the “Save directory” button.
The “Compute” button initiates the computation by calling the func-
tion “compute_DomainGauges” with the chosen computational

parameters.

24 | Computational workflow

All provided files as well as the selected PET maps are loaded into the
atlas space as mean value per file and region (Figure 1b). Depending
on the choice of the computing option, a spatial correlation or multi-
ple linear regression is then computed between the selected PET
maps and the extracted values as per selected computing option. In
case adjustment the optional adjustment for spatial autocorrelation
was selected (default), a partial spatial correlation is computed

between both adjusting for local gray matter probabilities as
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estimated from TPM.nii provided with SPM12. In case of multiple lin-
ear regression, local gray matter probabilities are added as a covariate
into the model. For correlation analyses, Fisher's z-transformed coeffi-
cients are provided as well as the original correlation coefficients. The
distribution of Fisher's z transformed correlation coefficients or
regression coefficients for computing options 5-8 is compared against
null distribution using one-sample t-tests. For group-level computing
options 1-4, the p-value is provided directly for the specific correla-

tion /multiple linear regression analysis.

2.5 | Permutation statistics

An optional exact orthogonal permutation based p-value can be com-
puted for correlational analyses (Pearson and Spearman) for comput-
ing options 1, 2, 5, and 6. The orthogonal permutation approach
ensures that the shuffled labels vector is uncorrelated with the initial
label vector providing a more valid null distribution (Aickin, 2010). The
exact p-value is then computed using add-one discounting. For the
within-subject designs (computing option 2 and 6é), the permutations
are performed by random switching of 50% of the data between files
1 and files 2 while maintaining pairwise associations. For the
between-subject designs (computing options 1 and 5), the files from
both groups are randomly permuted across files 1 and files 2 while
maintaining the initial relative ratios of both groups in each permuta-
tion. For options 5 and 6, the exact p-value is computed as the num-
ber of mean absolute correlation coefficients across permutations

exceeding the observed mean absolute correlation coefficient.

N a2
& &
5HT1a 0.05 0.48

2.6 | Correlation between PET and SPECT maps
We computed Spearman correlations using computing option 4 with
and without adjustment for auto-correlation to understand the inter-
dependencies between all included PET and SPECT maps. Significant
positive correlations were observed between most PET maps with
strongest correlations of up to rho = .89 for GABAa and 5-HT2a and
rho = .88 for DAT and SERT (all p < .001) (Figure 2). The only signifi-
cant but weak negative correlation was observed between 5-HT1a
and D2 (rho = -0.19, p = .037). To illustrate the utility of JuSpace we
applied it to two datasets capturing disease- and drug-induced activity
alterations as measured using rsfMRI.

3 | APPLICATION EXAMPLE 1

3.1 | Dataset

To demonstrate the functionality of the JuSpace we applied it to an
rsfMRI dataset of 30 PD patients scanned on and off levodopa as
compared to 30 age and sex matched healthy controls (HC). A
detailed description of the dataset as well of image acquisition and
preprocessing is provided in Supplement 1. Fractional Amplitude of
Low Frequency Fluctuations (FALFF) was computed as a measure-
ment of local activity using the REST toolbox with default parame-
ters (linear detrending and 0.01-0.08 Hz band-pass filtering). This
measure was selected as it has been shown to most closely corre-

lates with underlying metabolic activity as measured using glucose

Qv ' A
A @) 2 el
5 ¥ X L I Na oA )
028 019 | 0.29 0.21 0.4 0.03 0.31

0.8

5HT1b ’ 0.27 0.36 -0.11 -0.06 0.52 0.24 0.12
d 0.6
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FIGURE 2 Results of spatial
correlation analyses between PET and
SPECT derived neurotransmitter maps.
The displayed numbers are the observed
Spearman correlation coefficients.
Significant correlations are highlighted by
underlying ellipses. DAT, dopamine
transporter; FDOPA, Fluorodopa; GABA3,
y-Aminobutyric acid type A; NAT,
noradrenaline transporter; SERT,
serotonin transporter
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utilization as compared to other commonly used rsfMRI measures
(Aiello et al., 2015).

3.2 | Spatial correlation analyses

We aimed to evaluate if fALFF alterations in PD patients on and off
levodopa (individual z-scores) as compared to HC are correlated with
specific neurotransmitter systems. For this, we used the JuSpace tool-
box to compute Spearman correlation coefficients between respective
measures (computing option 5) and the above PET maps included in
the toolbox. We further aimed to test for the effects of levodopa on
the fALFF maps. For this, we correlated the single subject pairwise
differences between the fALFF maps with and without levodopa with
the above PET maps (computing option 6). Exact permutation-based
p-values (with 10,000 permutations) were computed for all analyses
to test if the mean correlation coefficients observed across subjects
are significantly different from the null distribution. All analyses were
false discovery rate (FDR) corrected for the number of tests for each

group comparison.

3.3 | Voxel-wise analyses

To compare the sensitivity and the information provided by the spatial
correlation approach we additionally performed standard voxel-wise
analyses in SPM12 comparing either PD patients on and off levodopa
to HC (two-sample t-tests, including age and sex as covariates), or PD
patients on levodopa to their off levodopa state (paired t-tests). The
focus of the above spatial correlation analyses was on evaluating simi-
larity of PD-related and drug-induced spatial patterns with specific
PET maps. To visualize all regions showing strongest respective
changes we applied a liberal voxel-wise threshold of p < .05 combined
with a cluster threshold of 100 voxels. Additionally, we report all con-
trasts which survive classical voxel-wise whole-brain family-wise error

correction (p < .05 FWE corrected) for multiple comparisons.

4 | APPLICATION EXAMPLE 2

41 | Datasetandimage processing
In a second application example, we applied JuSpace to a CBF dataset
of healthy volunteers (N = 21) scanned on placebo and on a low and
high dose of the dopamine antagonist risperidone (0.5 and 2 mg)—a
serotonin and dopamine antagonist. Quantitative CBF maps in stan-
dard units (ml blood/100 mg tissue/min) were computed from a
pseudocontinuous Arterial Spin Labeling sequence using a proton
density maps. The risperidone cohort is described in detail in Supple-
ment 1 and in a previous publication (Hawkins et al., 2018).
Pre-processing of CBF data was performed using the Statistical
Parametric Mapping (SPM12) software

package (Friston

et al., 1994). CBF data were first co-registered to individual struc-
tural T1 images. Structural scans were segmented and normalized
into the Montreal Neurological Institute (MNI) space using the SPM
Segment function. Deformation parameters derived from this nor-
malization were then applied to the co-registered and gray matter
masked CBF data to bring them into the MNI space. Additionally,
smoothing with Gaussian kernel of 8 mm FWHM was applied prior

to voxel-wise analyses.

4.2 | Spatial correlation analyses

For the risperidone dataset, we tested for the effects of high and low
dose of risperidone as compared to placebo and to each other by
computing Spearman correlation coefficients between respective
within-subject pairwise differences (computing options 6). Exact
permutation-based p-values (10,000 permutations) were computed
for all analyses. All analyses were FDR corrected according to the
number of tests for each group comparison.

43 | Voxel-wise analyses

We computed a within subject ANOVA to compare risperidone high
dose, risperidone low dose and placebo conditions using pair-wise t-
contrasts. Same voxel- and cluster-wise thresholds as for the PD

dataset were applied.

5 | IMPACT OF ATLAS CHOICE

We further aimed to evaluate how the choice of an atlas affects the
consistency of findings observed in the above spatial correlation
analyses. For this, all spatial correlation analyses for application
examples 1 and 2 that were computed using the Neu-
romorphometrics atlas were repeated using the also commonly
applied automated anatomical labeling (AAL) atlas (Tzourio-Mazoyer
et al, 2002). Consistency of the individual correlations observed
with both atlases across subjects for the different neurotransmitter
maps was evaluated using Cronbach's alpha as implemented in the
ICC (intraclass correlation coefficient) function (“C-k” option) in
Matlab.

6 | RESULTS
6.1 | Application example 1
6.1.1 | Results of spatial correlation analyses

Individual fALFF alterations in PD patients off levodopa as compared

to HC were significantly associated with spatial distribution of D2
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(b <.001) and 5-HT1b (p =.003) receptors as derived from healthy
subjects (Figure 3a). Similarly, fALFF alterations in PD patients on
levodopa were significantly associated with availability of D2
(p =.002) and 5-HT1b receptors (both p =.008) (Figure 3b). There
was no significant difference between levodopa on and off conditions
(all p > .29) (Figure 3c).

6.1.2 | Results of voxel-wise analyses

In voxel-wise comparisons to HC, decreased fALFF was observed in
PD on and off levodopa conditions in an extensive network covering
predominantly prefrontal, parietal, cerebellar, basal ganglia, supple-
mentary and primary motor regions (Figure 4a,b). Increased fALFF
was observed primarily in temporal and orbitofrontal cortices.
Decreased fALFF was observed in PD on levodopa as compared off
levodopa in prefrontal, left temporal and right parietal cortices
(Figure 4c). None of the effects survived whole-brain voxel-wise cor-

rection for multiple comparisons.

6.2 | Application example 2

6.2.1 | Results of spatial correlation analyses

CBF alterations induced by the low dose of risperidone as compared
to placebo were significantly associated with D1 (p =.002), DAT
(p <.001), F-Dopa (p =.006) and SERT (p < .001) maps (Figure 3d).
CBF changes induced by the high dose of risperidone were signifi-
cantly correlated with 5-HT2a (p < .001), D1 (p = .003), D2 (p = .003),
DAT (p <.001), GABAa (p <.001) and SERT (p <.001) maps
(Figure 3e). CBF changes with the high dose as compared to low dose
of risperidone were significantly associated with 5-HT2a and GABAa
receptor availability (both p < .001) (Figure 3f).

6.2.2 | Results of voxel-wise analyses

Increased CBF was observed in basal ganglia comparing high and low
dose of risperidone to placebo (Figure 3d,e). Reduced CBF in low dose
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as compared to placebo was predominantly restricted to occipital and
cerebellar cortices. High dose associated changes were more exten-
sive covering prefrontal, posterior cingulate, cerebellar temporal, pari-
etal and occipital regions. High dose as compared to low dose of
risperidone showed an increase in CBF in the right corpus striatum
(Figure 3f). Reduced CBF was observed with high dose in prefrontal,
temporal, occipital, parietal, and cerebellar regions. Only the reduced
CBF in cerebellar and occipital regions in high dose as compared to
placebo survived whole-brain voxel-wise correction for multiple

comparisons.

6.2.3 | Results for the impact of atlas choice

A high median consistency ranging from ICC = .83-.86 was observed
for the results obtained using the Neuromorphometrics and the AAL
atlas for both application examples (Figure 5).

7 | DISCUSSION

Here we introduce the JuSpace Toolbox, an integrated system for the
comparison of PET and SPECT derived neurotransmitter maps with
other imaging modalities such as rsfMRI data. The software tests for
associations between the imaging data of interest and a list of
included PET and SPECT maps by computing correlations or multiple

linear regressions.

FIGURE 4 Results of voxel-
wise analyses for PD and
risperidone datasets. Orange
color indicates increased fALFF
(for PD) or CBF (for risperidone)
in the first mentioned condition/
group. Cyan color indicates
decreased fALFF (for PD) or CBF
(for risperidone) in the first
mentioned condition/group.
Montreal Neurological Institute
(MNI) space z-coordinates are
reported for each slice. HC,
healthy controls; HD, high dose
of risperidone; LD, low dose of
risperidone; PD, Parkinson's
disease

JuSpace allows for an easy integration of neuroimaging data with
PET-derived receptor maps. JuSpace is a user-friendly tool allowing
user interface-based applications by researchers with limited program-
ming experience as well as direct function calls. The choice of settings
for the analyses is kept to a minimum. The toolbox further supports
an easy integration of other atlases and other PET-derived informa-
tion, provided they have the same resolution, by simply adding the
respective maps in MNI space into the PET atlas directory. JuSpace is
designed to test the hypotheses that the spatial structure of imaging
alterations induced that is, by disease or drug is associated with the
availability of a specific receptor across the brain. Besides direct cor-
relation between the imaging data of interest and the available PET
maps, the software supports simple between- and within-subject
designs by computing effect sizes, z-scores and pair-wise differences.
For both, between- and within-subject designs the toolbox provides
more rigorous permutation based statistics. Usage of these exact sta-
tistics for both options is strongly recommended to avoid erroneous
assumptions on data distribution or actual spatial degrees of freedom.

As compared to available imaging-genomic toolboxes correlating
imaging information with the spatial information derived from few
donors from the Allen Brain Atlas of postmortem mRNA expression
JuSpace carries the advantage of making less assumptions about
underlying biology (i.e., unknown transcription of respective mRNA
into specific tissue properties) (Rizzo et al., 2016). It also allows for
evaluation of spatial associations with PET-derived transmitter syn-
thesis information that are only available from in vivo studies, that is,

F-Dopa PET-derived dopamine synthesis capacity.
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8 | CONCLUSIONS FROM THE
APPLICATION EXAMPLES

Here we applied the JuSpace toolbox to two datasets covering dis-
ease related rsfMRI alterations in PD as well drug-induced CBF alter-
ations in healthy controls. We show that rsfMRI activity alterations in
PD on and off levodopa are closely associated with availability of D2
and 5-HT1b receptors. These results are closely in line with the well-
established affectedness of the dopaminergic and serotonergic sys-
tems in PD (Booij et al., 1997; Pagano et al., 2017). Furthermore, the
consistency of the effects obtained with both scans in PD illustrates
the robustness of findings obtained using spatial correlation analyses.
We do not find significant associations between PET maps and fALFF
differences between PD on and off levodopa. This is potentially
explained by the effects being either subtle or not following the distri-
bution of the specific receptor maps currently included in JuSpace.
Risperidone-induced brain activity alterations are associated with
a variety of neurotransmitter systems including dopaminergic and
serotonergic effects. In contrast to the highest affinity of risperidone
to 5-HT2a followed by D2 the significant associations with the
corresponding PET receptor maps only appeared with the high dose
(Schotte et al., 1996). The strongest effects observed with low dose
rather associate with DAT, SERT and D1 receptor maps. In our

previous study (Selvaggi et al., 2018) we observed correlations with
D2 receptors at both doses for the group averaged data. This study
did not examine effects using other targets and did not evaluate indi-
vidual differences. Importantly, the spatial correlation analysis relies
on a direct translation of the effect observed on the specific receptor
into the respective activity measurement, which may vary by drug and
across subjects. Indeed, we see a substantial variation across subjects
in the strength and direction of the observed correlations. This varia-
tion may reflect the individual susceptibility of specific receptor sys-
tems to the disease process or in case of drug data the strength of the
pharmacodynamics response. Yet, ideally simultaneous PET and MRI
studies are needed to provide a detailed insight into the mechanisms
underlying this variation. The observed discrepancies suggest that the
effects on different receptors may have different transfer function
onto the observed CBF changes that is not directly associated with
respective receptor affinities. This observation is in line with our pre-
vious work evaluating correlations with postmortem receptor expres-
sion (Dukart et al., 2018). Overall, while the observed correlations
with serotonergic and dopaminergic system are in line with the known
mechanism of action of risperidone the correlation with GABAa
receptor appearing with the high dose may appear unexpected as
there is no reported affinity of risperidone to the respective receptor.

There are two potential explanations for this effect. We observe a
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very strong positive correlation between GABAa and 5-HT2a receptor
availability. In that sense, the observed correlation with both recep-
tors is likely due to the collinearity of both receptor systems making it
difficult to dissociate the specific effects on one of the two systems.
Another possible explanation for the observed correlation with
GABAa may be in the reported interdependence of both systems with
5-HT2a activation resulting in inhibition of GABAa currents (Feng
et al. 2001). Similar to that, the strong correlation of PET maps may
also explain the observed correlation of the low dose changes with
DAT, SERT and D1 as all of the PET maps are strongly correlated.
These strong cross-correlations between different PET maps indicate
that caution is required with respect to interpretation of observed
associations as being specific to a particular receptor. Further analyses
adjusting for cross-correlation of the PET receptors such as the multi-
ple linear regression analyses option also provided with the toolbox
may facilitate the interpretation in such cases.

Whole-brain corrected analyses of both datasets only revealed
differences between high dose of risperidone and placebo. The
results applying a more liberal threshold were rather diffuse covering
a wide-range of regions making it difficult to interpret the findings
with respect to any specific anatomical circuitries. In contrast, spatial
correlation analyses reveal a higher sensitivity to both PD- and
risperidone-induced changes and additionally provide a biologically
meaningful interpretation of the observed effects. Our results there-
fore suggest the higher sensitivity of the spatial correlation approach
to detect disease- and drug-related activity alterations as compared
to standard voxel-wise analyses. The likely reasons for the higher
sensitivity of the spatial correlation as compared to voxel-wise anal-
ysis is the substantially higher reliability of spatial activity profiles as
compared to classical voxel- or region-wise fALFF and CBF measures
(Holiga et al., 2018). In line with this notion of high test-retest reli-
ability, we find a high consistency of all results with respect to the
choice of the applied atlas. However, these results also demonstrate
that the choice of the atlas may introduce some variability into the
outcomes. It will be therefore important for future studies to sys-
tematically evaluate which atlas provide an optimum choice with
respect to differentiation of regions with distinct neurotransmitter
profiles. In this context, it will be also important to test the applica-
bility and reproducibility of the introduced spatial correlation
approach across different datasets.

Overall, the JuSpace toolbox allows for cross-modal evaluation of
neuroimaging data alongside molecular imaging atlases as also illus-
trated in recent publications. The inclusion of PET and SPECT atlases
for different neurotransmitter systems allows for biologically mean-
ingful evaluation and interpretation of the spatial patterns. This is a
flexible platform enabling inclusion of user-defined atlases and other
imaging modalities. As such, it has a great potential to improve and
simplify multi-modal brain imaging research.
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