000885826 001__ 885826
000885826 005__ 20210130010531.0
000885826 0247_ $$2doi$$a10.1029/2020JD032893
000885826 0247_ $$2ISSN$$a0148-0227
000885826 0247_ $$2ISSN$$a2156-2202
000885826 0247_ $$2ISSN$$a2169-897X
000885826 0247_ $$2ISSN$$a2169-8996
000885826 0247_ $$2Handle$$a2128/26005
000885826 0247_ $$2WOS$$aWOS:000591896900005
000885826 037__ $$aFZJ-2020-04117
000885826 041__ $$aEnglish
000885826 082__ $$a550
000885826 1001_ $$00000-0002-7076-0449$$aBossert, Katrina$$b0$$eCorresponding author
000885826 245__ $$aObservations of Stratospheric Gravity Waves Over Europe on 12 January 2016: The Role of the Polar Night Jet
000885826 260__ $$aHoboken, NJ$$bWiley$$c2020
000885826 3367_ $$2DRIVER$$aarticle
000885826 3367_ $$2DataCite$$aOutput Types/Journal article
000885826 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604041591_20376
000885826 3367_ $$2BibTeX$$aARTICLE
000885826 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885826 3367_ $$00$$2EndNote$$aJournal Article
000885826 520__ $$aObservations during 12 January 2016 revealed a series of events of significant gravity wave (GW) activity over Europe. Analysis of derived temperatures from the Atmospheric InfraRed Sounder (AIRS) provides insight into the sources of these GWs, and include a new observation of stratosphere polar night jet (PNJ) generated GWs. Mountain waves were present during this time as well over the French Alps and the Carpathian Mountains, and had maximum temperature perturbations, T’, as large as 27K over the French Alps. Further investigation of the mountain waves demonstrated their presence in the stratosphere was not only determined by stratospheric conditions, but also by strong winds in the troposphere and at the surface. GWs generated in the stratosphere by the PNJ had maximum T’ of 7K. These observations demonstrate multiple sources of GWs during a dynamically active period, and implicate the role of the PNJ in both the vertical propagation of GWs generated in the troposphere and the generation of GWs from the PNJ itself.
000885826 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000885826 588__ $$aDataset connected to CrossRef
000885826 7001_ $$00000-0002-6459-005X$$aVadas, Sharon L.$$b1
000885826 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b2
000885826 7001_ $$0P:(DE-HGF)0$$aBecker, Erich$$b3
000885826 7001_ $$0P:(DE-HGF)0$$aHarvey, V. Lynn$$b4
000885826 7001_ $$00000-0002-4892-9615$$aBramberger, Martina$$b5
000885826 773__ $$0PERI:(DE-600)2016800-7$$a10.1029/2020JD032893$$n21$$pe2020JD032893$$tJournal of geophysical research / D$$v125$$x0148-0227$$y2020
000885826 8564_ $$uhttps://juser.fz-juelich.de/record/885826/files/2020JD032893.pdf
000885826 8564_ $$uhttps://juser.fz-juelich.de/record/885826/files/877504_2_art_file_8026288_qhdk4c%20%281%29.pdf$$yOpenAccess
000885826 8564_ $$uhttps://juser.fz-juelich.de/record/885826/files/877504_2_art_file_8026288_qhdk4c%20%281%29.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885826 8564_ $$uhttps://juser.fz-juelich.de/record/885826/files/2020JD032893.pdf?subformat=pdfa$$xpdfa
000885826 909CO $$ooai:juser.fz-juelich.de:885826$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885826 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b2$$kFZJ
000885826 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000885826 9141_ $$y2020
000885826 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27
000885826 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27
000885826 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-27
000885826 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-27$$wger
000885826 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27
000885826 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-27
000885826 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27
000885826 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-27
000885826 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885826 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ GEOPHYS RES-ATMOS : 2018$$d2020-02-27
000885826 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-27
000885826 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000885826 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27
000885826 920__ $$lyes
000885826 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000885826 980__ $$ajournal
000885826 980__ $$aVDB
000885826 980__ $$aUNRESTRICTED
000885826 980__ $$aI:(DE-Juel1)JSC-20090406
000885826 9801_ $$aFullTexts