001     885838
005     20210130010534.0
024 7 _ |a 10.1016/j.brs.2020.09.019
|2 doi
024 7 _ |a 1876-4754
|2 ISSN
024 7 _ |a 1935-861X
|2 ISSN
024 7 _ |a 2128/25967
|2 Handle
024 7 _ |a altmetric:92156234
|2 altmetric
024 7 _ |a pmid:33038595
|2 pmid
024 7 _ |a WOS:000597945200035
|2 WOS
037 _ _ |a FZJ-2020-04124
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Dafsari, Haidar S.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Beneficial nonmotor effects of subthalamic and pallidal neurostimulation in Parkinson’s disease
260 _ _ |a New York, NY [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1603782088_18361
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a BackgroundSubthalamic (STN) and pallidal (GPi) deep brain stimulation (DBS) improve quality of life, motor, and nonmotor symptoms (NMS) in advanced Parkinson’s disease (PD). However, few studies have compared their nonmotor effects.ObjectiveTo compare nonmotor effects of STN-DBS and GPi-DBS.MethodsIn this prospective, observational, multicenter study including 60 PD patients undergoing bilateral STN-DBS (n = 40) or GPi-DBS (n = 20), we examined PDQuestionnaire (PDQ), NMSScale (NMSS), Unified PD Rating Scale-activities of daily living, -motor impairment, -complications (UPDRS-II, –III, -IV), Hoehn&Yahr, Schwab&England Scale, and levodopa-equivalent daily dose (LEDD) preoperatively and at 6-month follow-up. Intra-group changes at follow-up were analyzed with Wilcoxon signed-rank or paired t-test, if parametric tests were applicable, and corrected for multiple comparisons. Inter-group differences were explored with Mann-Whitney-U/unpaired t-tests. Analyses were performed before and after propensity score matching which balanced out demographic and preoperative clinical characteristics. Strength of clinical changes was assessed with effect size.ResultsIn both groups, PDQ, UPDRS-II, -IV, Schwab&England Scale, and NMSS improved significantly at follow-up. STN-DBS was significantly better for LEDD reduction, GPi-DBS for UPDRS-IV. While NMSS total score outcomes were similar, explorative NMSS domain analyses revealed distinct profiles: Both targets improved sleep/fatigue and mood/cognition, but only STN-DBS the miscellaneous (pain/olfaction) and attention/memory and only GPi-DBS cardiovascular and sexual function domains.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a dos Santos Ghilardi, Maria Gabriela
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Visser-Vandewalle, Veerle
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Rizos, Alexandra
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ashkan, Keyoumars
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Silverdale, Monty
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Evans, Julian
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Martinez, Raquel C. R.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Cury, Rubens G.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Jost, Stefanie T.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Barbe, Michael T.
|0 P:(DE-Juel1)131613
|b 10
700 1 _ |a Fink, Gereon R.
|0 P:(DE-Juel1)131720
|b 11
|u fzj
700 1 _ |a Antonini, Angelo
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Ray-Chaudhuri, K.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Martinez-Martin, Pablo
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Fonoff, Erich Talamoni
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Timmermann, Lars
|0 P:(DE-HGF)0
|b 16
773 _ _ |a 10.1016/j.brs.2020.09.019
|g Vol. 13, no. 6, p. 1697 - 1705
|0 PERI:(DE-600)2404774-0
|n 6
|p 1697 - 1705
|t Brain stimulation
|v 13
|y 2020
|x 1935-861X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/885838/files/Dafsari_2020_BrainStim_Beneficial%20nonmotor%20effects%20of....pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/885838/files/Dafsari_2020_BrainStim_Beneficial%20nonmotor%20effects%20of....pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:885838
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)131720
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2019-12-21
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRAIN STIMUL : 2018
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2019-12-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2019-12-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BRAIN STIMUL : 2018
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2019-12-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21