000885843 001__ 885843
000885843 005__ 20230111074318.0
000885843 0247_ $$2doi$$a10.1016/j.neuroimage.2020.117435
000885843 0247_ $$2ISSN$$a1053-8119
000885843 0247_ $$2ISSN$$a1095-9572
000885843 0247_ $$2Handle$$a2128/25971
000885843 0247_ $$2altmetric$$aaltmetric:92643472
000885843 0247_ $$2pmid$$apmid:33039622
000885843 0247_ $$2WOS$$aWOS:000600796800048
000885843 037__ $$aFZJ-2020-04129
000885843 082__ $$a610
000885843 1001_ $$00000-0003-1960-2856$$aQuoilin, Caroline$$b0$$eCorresponding author
000885843 245__ $$aNeural bases of inhibitory control: Combining transcranial magnetic stimulation and magnetic resonance imaging in alcohol-use disorder patients
000885843 260__ $$aOrlando, Fla.$$bAcademic Press$$c2021
000885843 3367_ $$2DRIVER$$aarticle
000885843 3367_ $$2DataCite$$aOutput Types/Journal article
000885843 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1603788860_19249
000885843 3367_ $$2BibTeX$$aARTICLE
000885843 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885843 3367_ $$00$$2EndNote$$aJournal Article
000885843 520__ $$aInhibitory control underlies the ability to inhibit inappropriate responses and involves processes that suppress motor excitability. Such motor modulatory effect has been largely described during action preparation but very little is known about the neural circuit responsible for its implementation. Here, we addressed this point by studying the degree to which the extent of preparatory suppression relates to brain morphometry. We investigated this relationship in patients suffering from severe alcohol use disorder (AUD) because this population displays an inconsistent level of preparatory suppression and major structural brain damage, making it a suitable sample to measure such link. To do so, 45 detoxified patients underwent a structural magnetic resonance imaging (MRI) and performed a transcranial magnetic stimulation (TMS) experiment, in which the degree of preparatory suppression was quantified. Besides, behavioral inhibition and trait impulsivity were evaluated in all participants. Overall, whole-brain analyses revealed that a weaker preparatory suppression was associated with a decrease in cortical thickness of a medial prefrontal cluster, encompassing parts of the anterior cingulate cortex and superior-frontal gyrus. In addition, a negative association was observed between the thickness of the supplementary area (SMA)/pre-SMA and behavioral inhibition abilities. Finally, we did not find any significant correlation between preparatory suppression, behavioral inhibition and trait impulsivity, indicating that they represent different facets of inhibitory control. Altogether, the current study provides important insight on the neural regions underlying preparatory suppression and allows highlighting that the excitability of the motor system represents a valuable read-out of upstream cognitive processes.
000885843 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000885843 588__ $$aDataset connected to CrossRef
000885843 7001_ $$0P:(DE-HGF)0$$aDricot, Laurence$$b1
000885843 7001_ $$0P:(DE-Juel1)161225$$aGenon, Sarah$$b2
000885843 7001_ $$0P:(DE-HGF)0$$ade Timary, Philippe$$b3
000885843 7001_ $$0P:(DE-HGF)0$$aDuque, Julie$$b4
000885843 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2020.117435$$gVol. 224, p. 117435 -$$p117435$$tNeuroImage$$v224$$x1053-8119$$y2021
000885843 8564_ $$uhttps://juser.fz-juelich.de/record/885843/files/1-s2.0-S1053811920309204-main.pdf$$yOpenAccess
000885843 8564_ $$uhttps://juser.fz-juelich.de/record/885843/files/1-s2.0-S1053811920309204-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885843 909CO $$ooai:juser.fz-juelich.de:885843$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885843 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161225$$aForschungszentrum Jülich$$b2$$kFZJ
000885843 9130_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000885843 9141_ $$y2021
000885843 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-03
000885843 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-03
000885843 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-03
000885843 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-03
000885843 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-03
000885843 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000885843 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2018$$d2020-01-03
000885843 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-03
000885843 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-03
000885843 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-03
000885843 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885843 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-03
000885843 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2018$$d2020-01-03
000885843 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-03
000885843 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-03
000885843 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-03
000885843 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-03$$wger
000885843 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-03
000885843 920__ $$lyes
000885843 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000885843 980__ $$ajournal
000885843 980__ $$aVDB
000885843 980__ $$aUNRESTRICTED
000885843 980__ $$aI:(DE-Juel1)INM-7-20090406
000885843 9801_ $$aFullTexts