000885860 001__ 885860
000885860 005__ 20230111074318.0
000885860 0247_ $$2doi$$a10.2967/jnumed.120.254243
000885860 0247_ $$2Handle$$a2128/28689
000885860 0247_ $$2altmetric$$aaltmetric:94270132
000885860 0247_ $$2pmid$$apmid:33158907
000885860 0247_ $$2WOS$$aWOS:000709477900011
000885860 037__ $$aFZJ-2020-04140
000885860 041__ $$aEnglish
000885860 082__ $$a610
000885860 1001_ $$0P:(DE-HGF)0$$aCeccon, G.$$b0
000885860 245__ $$aEarly treatment response assessment using $^{18}$F-FET PET compared to contrast-enhanced MRI in glioma patients after adjuvant temozolomide chemotherapy
000885860 260__ $$aNew York, NY$$bSoc.$$c2021
000885860 3367_ $$2DRIVER$$aarticle
000885860 3367_ $$2DataCite$$aOutput Types/Journal article
000885860 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642405012_8098
000885860 3367_ $$2BibTeX$$aARTICLE
000885860 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885860 3367_ $$00$$2EndNote$$aJournal Article
000885860 520__ $$aThe goal of this study was to compare the value of contrast-enhanced MRI and O-(2-[18F]fluoroethyl)-l-tyrosine (18F-FET) PET for response assessment in glioma patients after adjuvant temozolomide chemotherapy (TMZ). Methods: After biopsy or resection and completion of radiotherapy with concomitant TMZ, 41 newly diagnosed and histomolecularly characterized glioma patients (glioblastoma, 90%; age range, 20–79 y) were subsequently treated with adjuvant TMZ. MR and 18F-FET PET imaging were performed at baseline and after the second cycle of adjuvant TMZ. We obtained 18F-FET metabolic tumor volumes (MTVs) as well as mean and maximum tumor-to-brain ratios (TBRmean and TBRmax, respectively). Threshold values of 18F-FET PET parameters to predict outcome were established by receiver-operating-characteristic analyses using a median progression-free survival (PFS) of ≥ 9 mo and overall survival (OS) of ≥ 15 mo as reference. MRI response assessment was based on the Response Assessment in Neuro-Oncology (RANO) working group criteria. The predictive value of changes of 18F-FET PET and MRI parameters on survival was evaluated subsequently using univariate and multivariate survival estimates. Results: After 2 cycles of adjuvant TMZ chemotherapy, a treatment-induced reduction of MTV and TBRmax predicted a significantly longer PFS and OS (both P ≤ 0.03; univariate survival analyses) whereas RANO criteria were not significant (P > 0.05). Multivariate survival analysis revealed that TBRmax changes predicted a prolonged PFS (P = 0.012) and changes of MTV a prolonged OS (P = 0.005) independent of O6-methylguanine-DNA-methyltransferase promoter methylation and other strong prognostic factors. Conclusion: Changes of 18F-FET PET parameters appear to be helpful for identifying responders to adjuvant TMZ early after treatment initiation.
000885860 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000885860 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x1
000885860 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000885860 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b1
000885860 7001_ $$0P:(DE-HGF)0$$aWerner, Jan-Michael$$b2
000885860 7001_ $$0P:(DE-HGF)0$$aCaroline, Tscherpel$$b3
000885860 7001_ $$0P:(DE-HGF)0$$aDunkl, Veronika$$b4
000885860 7001_ $$0P:(DE-Juel1)131627$$aStoffels, Gabriele$$b5
000885860 7001_ $$0P:(DE-HGF)0$$aRosen, Jurij$$b6
000885860 7001_ $$0P:(DE-HGF)0$$aRapp, Marion$$b7
000885860 7001_ $$0P:(DE-HGF)0$$aHerrlinger, Ulrich$$b8
000885860 7001_ $$0P:(DE-HGF)0$$aSchäfer, Niklas$$b9
000885860 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b10
000885860 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b11
000885860 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b12
000885860 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b13$$eCorresponding author
000885860 773__ $$0PERI:(DE-600)2040222-3$$a10.2967/jnumed.120.254243$$gp. jnumed.120.254243 -$$n7$$p918-925$$tJournal of nuclear medicine$$v62$$x0022-3123$$y2021
000885860 8564_ $$uhttps://juser.fz-juelich.de/record/885860/files/Galldiks_JNuclMed_Early%20treatment%20response....pdf
000885860 8564_ $$uhttps://juser.fz-juelich.de/record/885860/files/Ceccon_2020_JNuclMed__FINAL_Early%20treatment....pdf$$yOpenAccess
000885860 8564_ $$uhttps://juser.fz-juelich.de/record/885860/files/Galldiks_JNuclMed_Early%20treatment%20response....pdf?subformat=pdfa$$xpdfa
000885860 8564_ $$uhttps://juser.fz-juelich.de/record/885860/files/jnumed.120.254243.full.pdf$$yOpenAccess
000885860 8767_ $$8JNUMED/2020/254243$$d2020-10-27$$ePublication charges$$jZahlung erfolgt$$z450 USD, INM-3, Belegnummer 1200159022
000885860 909CO $$ooai:juser.fz-juelich.de:885860$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000885860 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b1$$kFZJ
000885860 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich$$b5$$kFZJ
000885860 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b10$$kFZJ
000885860 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b11$$kFZJ
000885860 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b12$$kFZJ
000885860 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b13$$kFZJ
000885860 9130_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000885860 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000885860 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
000885860 9141_ $$y2021
000885860 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-18
000885860 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-18
000885860 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-18
000885860 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-18
000885860 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-18
000885860 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NUCL MED : 2018$$d2020-01-18
000885860 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-18
000885860 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-18
000885860 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-01-18
000885860 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885860 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ NUCL MED : 2018$$d2020-01-18
000885860 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-18
000885860 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-18
000885860 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-18
000885860 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-18
000885860 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-18
000885860 920__ $$lyes
000885860 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000885860 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000885860 980__ $$ajournal
000885860 980__ $$aVDB
000885860 980__ $$aI:(DE-Juel1)INM-3-20090406
000885860 980__ $$aI:(DE-Juel1)INM-4-20090406
000885860 980__ $$aAPC
000885860 980__ $$aUNRESTRICTED
000885860 9801_ $$aAPC
000885860 9801_ $$aFullTexts